代码-第3章 实验环境搭建-林子雨编著《数据采集与预处理》
代码-第2章 实验环境搭建-林子雨编著《数据采集与预处理》
基于Scala语言的Spark数据处理分析案例集锦
【版权声明】版权所有,严禁转载,严禁用于商业用途,侵权必究。
基于Scala语言的Spark数据处理分析案例集锦
案例制作:厦门大学数据库实验室
指导老师:厦门大学信息学院计算机系数据库实验室 林子雨 博士/副教授 E-mail: ziyulin@xmu.edu.cn
相关教材:林子雨、赖永炫、陶继平编著《Spark编程基础(Scala版,第2版)》(访问教材官网)
相关案例:基于Python语言的Spark数据处理分析案例集锦(PySpark)
(1)基于泰坦尼克号生还数据的Spark数据处理分析
(2)基于美剧《权力的游戏》剧集数据的Spark数据处理分析
(3)基于Covid-19传播数据的Spark数据处理分析
(4)基于DOTA2 Matches数据集的Spark数据处理分析
(5)基于音乐数据的Spark数据处理与分析
(6)基于咖啡连锁店的Spark数据处理分析
(7)基于Spark的气象监测数据分析
(8)基于Spark的厦门市市民球场处理与分析
(9)基于Spark的Google Play应用商店数据分析
(10)基于Spark的淘宝数据分析
(11)基于Spark的电信客户流失分析
(12)基于Spark的NBA球员数据分析
在Windows10操作系统中安装MySQL8.0.30数据库
本教程是为林子雨编著《数据采集与预处理》(教材官网)第2.3节MySQL数据库的安装与使用编写的配套教程。之所以撰写本教程,是因为,《数据采集与预处理》教材中提供的MySQL数据库安装方法,在Windows7操作系统中可以顺利执行,但是,在Windows10操作系统中,会遇到安装失败的情况。因此,编写了本教程,可以帮助教材使用者顺利完成在Windows10操作系统中安装MySQL8.0.30数据库。
Spark+Kafka构建实时分析Dashboard案例(2022年9月V2.0版)——步骤二:数据处理和Python操作Kafka
返回本案例首页
查看前一步骤操作步骤一:实验环境准备
《Spark+Kafka构建实时分析Dashboard案例——步骤二:数据处理和Python操作Kafka》
开发团队:厦门大学数据库实验室 联系人:林子雨老师ziyulin@xmu.edu.cn
版权声明:版权归厦门大学数据库实验室所有,请勿用于商业用途;未经授权,其他网站请勿转载
本教程介绍大数据课程实验案例“Spark+Kafka构建实时分析Dashboard”的第二个步骤,数据处理和Python操作Kafka。在本篇博客中,首先介绍如何预处理数据,以及如何使用Python操作Kafka。
Spark+Kafka构建实时分析Dashboard案例(2022年9月V2.0版)——步骤一:实验环境准备
返回本案例首页
《Spark+Kafka构建实时分析Dashboard案例——步骤一:实验环境准备》
开发团队:厦门大学数据库实验室 联系人:林子雨老师 ziyulin@xmu.edu.cn
版权声明:版权归厦门大学数据库实验室所有,请勿用于商业用途;未经授权,其他网站请勿转载
本教程介绍大数据课程实验案例“Spark+Kafka构建实时分析Dashboard案例”的第一个步骤,实验环境准备工作,有些软件的安装在相应的章节还会介绍。
Spark+Kafka构建实时分析Dashboard案例介绍(2022年9月V2.0版)
返回本案例首页
《Spark+Kafka构建实时分析Dashboard案例介绍》
开发团队:厦门大学数据库实验室 联系人:林子雨老师ziyulin@xmu.edu.cn
版权声明:版权归厦门大学数据库实验室所有,请勿用于商业用途;未经授权,其他网站请勿转载
本教程介绍大数据课程实验案例“Spark+Kafka构建实时分析Dashboard”。在本篇博客中,将要介绍本案例的总体架构,包括案例整体的运行流程以及每个过程具体执行内容。
Kafka和Structured Streaming的组合使用(Spark 3.2.0)
本文节选自林子雨编著《Spark编程基础(Scala版)》(教材官网:http://dblab.xmu.edu.cn/post/spark/)
作者:厦门大学计算机科学与技术系 林子雨 博士/副教授
E-mail: ziyulin@xmu.edu.cn
Structured Streaming是用来进行流计算的组件,可以把Kafka(或Flume)作为数据源,让Kafka(或Flume)产生数据发送给Structured Streaming应用程序,Structured Streaming应用程序再对接收到的数据进行实时处理,从而完成一个典型的流计算过程。这里仅以Kafka为例进行介绍。这里使用的软件版本是:kafka_2.12-2.6.0,Spark3.2.0(Scala版本是2.12.15)。
继续阅读
Kafka和Spark Streaming的组合使用(Spark 3.2.0)
本文节选自林子雨编著《Spark编程基础(Scala版)》(教材官网:http://dblab.xmu.edu.cn/post/spark/)
作者:厦门大学计算机科学与技术系 林子雨 博士/副教授
E-mail: ziyulin@xmu.edu.cn
Spark Streaming是用来进行流计算的组件,可以把Kafka(或Flume)作为数据源,让Kafka(或Flume)产生数据发送给Spark Streaming应用程序,Spark Streaming应用程序再对接收到的数据进行实时处理,从而完成一个典型的流计算过程。这里仅以Kafka为例进行介绍。这里使用的软件版本是:kafka_2.12-2.6.0,Spark3.2.0(Scala版本是2.12.15)。
继续阅读