Python 虽然是一门脚本语言,但借助诸如 Numpy、Scipy 等功能强大的 package(包),如今 Python 在科学计算、机器学习、数据挖掘方面都有较为广泛的应用。本教程介绍如何在 Ubuntu/CentOS 中安装常用的 Python 机器学习包,包括 NumPy、pandas、SciPy、StatsModels、scikit-learn、matplotlib。
Python 虽然是一门脚本语言,但借助诸如 Numpy、Scipy 等功能强大的 package(包),如今 Python 在科学计算、机器学习、数据挖掘方面都有较为广泛的应用。本教程介绍如何在 Ubuntu/CentOS 中安装常用的 Python 机器学习包,包括 NumPy、pandas、SciPy、StatsModels、scikit-learn、matplotlib。
Python 虽然是一门脚本语言,但借助诸如 Numpy、Scipy 等功能强大的 package(包),如今 Python 在科学计算、机器学习、数据挖掘方面都有较为广泛的应用。本教程介绍如何在 Windows 中安装常用的 Python 机器学习包,包括 NumPy、pandas、SciPy、StatsModels、scikit-learn、matplotlib。
本文基于yhat上Logistic Regression in Python,作了中文翻译,并相应补充了一些内容。本文并不研究逻辑回归具体算法实现,而是使用了一些算法库,旨在帮助需要用Python来做逻辑回归的训练和预测的读者快速上手。
逻辑回归是一项可用于预测二分类结果(binary outcome)的统计技术,广泛应用于金融、医学、犯罪学和其他社会科学中。逻辑回归使用简单且非常有效,你可以在许多机器学习、应用统计的书中的前几章中找到个关于逻辑回归的介绍。逻辑回归在许多统计课程中都会用到。
我们不难找到使用R语言的高质量的逻辑回归实例,如UCLA的教程R Data Analysis Examples: Logit Regression就是一个很好的资源。Python是机器学习领域最流行的语言之一,并且已有许多Python的资源涵盖了支持向量积和文本分类等话题,但少有关于逻辑回归的资料。
本文介绍了如何使用Python来完成逻辑回归。