Spark入门:DataFrame的创建

【版权声明】博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载!
[返回Spark教程首页]

在进行Spark SQL编程之前,需要了解你当前安装的Spark是否包含Hive支持。Hive是基于Hadoop的数据仓库,可以让用户输入类似SQL语法的HiveQL语句,Hive会自动把HiveQL语句转换成底层的MapReduce任务去执行(要想了解更多数据仓库Hive的知识,可以参考厦门大学数据库实验室的Hive授课视频Hive安装指南)。因为, 根据是否包含Hive支持,Spark提供了两个不同的入口,即HiveConext和SQLContext。
继续阅读

Spark入门:读写Parquet(DataFrame)

【版权声明】博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载!
[返回Spark教程首页]

Spark SQL可以支持Parquet、JSON、Hive等数据源,并且可以通过JDBC连接外部数据源。前面的介绍中,我们已经涉及到了JSON、文本格式的加载,这里不再赘述。这里介绍Parquet,下一节会介绍JDBC数据库连接。
继续阅读

Spark入门:通过JDBC连接数据库(DataFrame)

【版权声明】博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载!
[返回Spark教程首页]

这里以关系数据库MySQL为例。首先,请参考厦门大学数据库实验室博客教程(Ubuntu安装MySQL),在Linux系统中安装好MySQL数据库。这里假设你已经成功安装了MySQL数据库。下面我们要新建一个测试Spark程序的数据库,数据库名称是“spark”,表的名称是“student”。
继续阅读

Spark入门:DataFrame与RDD的区别

【版权声明】博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载!
[返回Spark教程首页]

DataFrame的推出,让Spark具备了处理大规模结构化数据的能力,不仅比原有的RDD转化方式更加简单易用,而且获得了更高的计算性能。Spark能够轻松实现从MySQL到DataFrame的转化,并且支持SQL查询。
继续阅读

Spark入门:从RDD转换得到DataFrame

【版权声明】博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载!
[返回Spark教程首页]
Spark官网提供了两种方法来实现从RDD转换得到DataFrame,第一种方法是,利用反射来推断包含特定类型对象的RDD的schema;第二种方法是,使用编程接口,构造一个schema并将其应用在已知的RDD上。
继续阅读

Spark入门:套接字流(DStream)

【版权声明】博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载!
[返回Spark教程首页]

Spark Streaming可以通过Socket端口监听并接收数据,然后进行相应处理。Spark Streaming自身就提供了一个简单的样例程序,我们先直接演示这个程序,看看效果,然后再动手编写程序打包运行。
继续阅读