Spark2.0入门:DataFrame与RDD的区别

【版权声明】博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载!
[返回Spark教程首页]

DataFrame的推出,让Spark具备了处理大规模结构化数据的能力,不仅比原有的RDD转化方式更加简单易用,而且获得了更高的计算性能。Spark能够轻松实现从MySQL到DataFrame的转化,并且支持SQL查询。
继续阅读

Spark2.0入门 Spark SQL简介

【版权声明】博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载!
[返回Spark教程首页]

Spark SQL是Spark生态系统中非常重要的组件,其前身为Shark。Shark是Spark上的数据仓库,最初设计成与Hive兼容,但是该项目于2014年开始停止开发,转向Spark SQL。Spark SQL全面继承了Shark,并进行了优化。
继续阅读

Spark2.0入门:连接Hive读写数据(DataFrame)

【版权声明】博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载!
[返回Spark教程首页]

Hive是基于Hadoop的数据仓库(要想了解更多数据仓库Hive的知识以及如何安装Hive,可以参考厦门大学数据库实验室的Hive授课视频Hive安装指南)。本节内容介绍Spark如何连接Hive并读写数据。

继续阅读

Spark2.0入门:通过JDBC连接数据库(DataFrame)

【版权声明】博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载!
[返回Spark教程首页]

这里以关系数据库MySQL为例。首先,请参考厦门大学数据库实验室博客教程(Ubuntu安装MySQL),在Linux系统中安装好MySQL数据库。这里假设你已经成功安装了MySQL数据库。下面我们要新建一个测试Spark程序的数据库,数据库名称是“spark”,表的名称是“student”。
继续阅读

Spark2.0入门:读写Parquet(DataFrame)

【版权声明】博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载!
[返回Spark教程首页]

Spark SQL可以支持Parquet、JSON、Hive等数据源,并且可以通过JDBC连接外部数据源。前面的介绍中,我们已经涉及到了JSON、文本格式的加载,这里不再赘述。这里介绍Parquet,下一节会介绍JDBC数据库连接。

继续阅读

Spark 2.0分布式集群环境搭建

【版权声明】博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载!
[返回Spark教程首页]
Apache Spark 是一个新兴的大数据处理通用引擎,提供了分布式的内存抽象。Spark 最大的特点就是快,可比 Hadoop MapReduce 的处理速度快 100 倍。本文没有使用一台电脑上构建多个虚拟机的方法来模拟集群,而是使用三台电脑来搭建一个小型分布式集群环境安装。
本教程采用Spark2.0以上版本(比如Spark2.0.2、Spark2.1.0等)搭建集群,同样适用于搭建Spark1.6.2集群
继续阅读

Hadoop 2.7分布式集群环境搭建

Hadoop是一个能够让用户轻松架构和使用的分布式计算平台。为了更好演示集群分布,本文没有使用一台电脑上构建多个虚拟机的方法来模拟集群,而是使用三台电脑来搭建一个小型分布式集群环境安装。本文记录如何搭建并配置Hadoop分布式集群环境。
继续阅读