林子雨、赖永炫、陶继平编著《Spark编程基础》(教材官网)教材中的代码,在纸质教材中的印刷效果,可能会影响读者对代码的理解,为了方便读者正确理解代码或者直接拷贝代码用于上机实验,这里提供全书配套的所有代码。
查看教材所有章节的代码
第4章 Spark环境搭建和使用方法
sudo tar -zxf ~/下载/spark-2.1.0-bin-without-hadoop.tgz -C /usr/local/
cd /usr/local
sudo mv ./spark-2.1.0-bin-without-hadoop ./spark
sudo chown -R hadoop:hadoop ./spark # hadoop是当前登录Linux系统的用户名
cd /usr/local/spark
cp ./conf/spark-env.sh.template ./conf/spark-env.sh
export SPARK_DIST_CLASSPATH=$(/usr/local/hadoop/bin/hadoop classpath)
cd /usr/local/spark
bin/run-example SparkPi
bin/run-example SparkPi 2>&1 | grep "Pi is roughly"
cd /usr/local/hadoop
./sbin/start-dfs.sh
jps
./sbin/stop-dfs.sh
./bin/spark-shell --master <master-url>
cd /usr/local/spark
./bin/spark-shell --master local[4]
cd /usr/local/spark
./bin/spark-shell --master local[4] --jars code.jar
cd /usr/local/spark
./bin/spark-shell --help
cd /usr/local/spark
./bin/spark-shell
scala> 8*2+5
res0: Int = 21
scala > val textFile = sc.textFile("file:///usr/local/spark/README.md")
scala > textFile.count()
scala>:quit
https://repo.typesafe.com/typesafe/ivy-releases/org.scala-sbt/sbt-launch/0.13.11/sbt-launch.jar
sudo mkdir /usr/local/sbt
sudo chown -R hadoop /usr/local/sbt #此处的hadoop是Linux系统当前登录用户名
cd /usr/local/sbt
cp ~/下载/sbt-launch.jar .
vim ./sbt
#!/bin/bash
SBT_OPTS="-Xms512M -Xmx1536M -Xss1M -XX:+CMSClassUnloadingEnabled -XX:MaxPermSize=256M"
java $SBT_OPTS -jar `dirname $0`/sbt-launch.jar "$@"
chmod u+x ./sbt
./sbt sbt-version
http://apache.fayea.com/maven/maven-3/3.3.9/binaries/apache-maven-3.3.9-bin.zip
sudo unzip ~/下载/apache-maven-3.3.9-bin.zip -d /usr/local
cd /usr/local
sudo mv ./apache-maven-3.3.9 ./maven
sudo chown -R hadoop ./maven
cd ~ # 进入用户主文件夹
mkdir ./sparkapp # 创建应用程序根目录
mkdir -p ./sparkapp/src/main/scala # 创建所需的文件夹结构
cd ~
vim ./sparkapp/src/main/scala/SimpleApp.scala
/* SimpleApp.scala */
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
object SimpleApp {
def main(args: Array[String]) {
val logFile = "file:///usr/local/spark/README.md"
val conf = new SparkConf().setAppName("Simple Application")
val sc = new SparkContext(conf)
val logData = sc.textFile(logFile, 2).cache()
val numAs = logData.filter(line => line.contains("a")).count()
val numBs = logData.filter(line => line.contains("b")).count()
println("Lines with a: %s, Lines with b: %s".format(numAs, numBs))
}
}
cd ~
vim ./sparkapp/simple.sbt
name := "Simple Project"
version := "1.0"
scalaVersion := "2.11.8"
libraryDependencies += "org.apache.spark" %% "spark-core" % "2.1.0"
cd ~/sparkapp
find .
.
./src
./src/main
./src/main/scala
./src/main/scala/SimpleApp.scala
./simple.sbt
cd ~/sparkapp #一定把这个目录设置为当前目录
/usr/local/sbt/sbt package
cd ~
vim ./sparkapp2/pom.xml
<project>
<groupId>cn.edu.xmu</groupId>
<artifactId>simple-project</artifactId>
<modelVersion>4.0.0</modelVersion>
<name>Simple Project</name>
<packaging>jar</packaging>
<version>1.0</version>
<repositories>
<repository>
<id>jboss</id>
<name>JBoss Repository</name>
<url>http://repository.jboss.com/maven2/</url>
</repository>
</repositories>
<dependencies>
<dependency> <!-- Spark dependency -->
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.1.0</version>
</dependency>
</dependencies>
<build>
<sourceDirectory>src/main/scala</sourceDirectory>
<plugins>
<plugin>
<groupId>org.scala-tools</groupId>
<artifactId>maven-scala-plugin</artifactId>
<executions>
<execution>
<goals>
<goal>compile</goal>
</goals>
</execution>
</executions>
<configuration>
<scalaVersion>2.11.8</scalaVersion>
<args>
<arg>-target:jvm-1.5</arg>
</args>
</configuration>
</plugin>
</plugins>
</build>
</project>
cd ~/sparkapp2
find .
.
./pom.xml
./src
./src/main
./src/main/scala
./src/main/scala/SimpleApp.java
cd ~/sparkapp2 #一定把这个目录设置为当前目录
/usr/local/maven/bin/mvn package
spark-submit
--class <main-class> #需要运行的程序的主类,应用程序的入口点
--master <master-url> #<master-url>的含义和表4-1中的相同
--deploy-mode <deploy-mode> #部署模式
... #其他参数
<application-jar> #应用程序JAR包
[application-arguments] #传递给主类的主方法的参数
/usr/local/spark/bin/spark-submit --class "SimpleApp" ~/sparkapp/target/scala-2.11/simple-project_2.11-1.0.jar
/usr/local/spark/bin/spark-submit \
> --class "SimpleApp" \
> ~/sparkapp/target/scala-2.11/simple-project_2.11-1.0.jar
/usr/local/spark/bin/spark-submit \
> --class "SimpleApp" \
> ~/sparkapp/target/scala-2.11/simple-project_2.11-1.0.jar 2>&1 | grep "Lines with a:"
sudo tar -zxf ~/下载/spark-2.1.0-bin-without-hadoop.tgz -C /usr/local/
cd /usr/local
sudo mv ./spark-2.1.0-bin-without-hadoop ./spark
sudo chown -R hadoop:hadoop ./spark # hadoop是当前登录Linux系统的用户名
vim ~/.bashrc
export SPARK_HOME=/usr/local/spark
export PATH=$PATH:$SPARK_HOME/bin:$SPARK_HOME/sbin
source ~/.bashrc
cd /usr/local/spark/
cp ./conf/slaves.template ./conf/slaves
Slave01
Slave02
cp ./conf/spark-env.sh.template ./conf/spark-env.sh
export SPARK_DIST_CLASSPATH=$(/usr/local/hadoop/bin/hadoop classpath)
export HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop
export SPARK_MASTER_IP=192.168.1.104
cd /usr/local/
tar -zcf ~/spark.master.tar.gz ./spark
cd ~
scp ./spark.master.tar.gz Slave01:/home/hadoop
scp ./spark.master.tar.gz Slave02:/home/hadoop
sudo rm -rf /usr/local/spark/
sudo tar -zxf ~/spark.master.tar.gz -C /usr/local
sudo chown -R hadoop /usr/local/spark
cd /usr/local/hadoop/
sbin/start-all.sh
cd /usr/local/spark/
sbin/start-master.sh
sbin/start-slaves.sh
sbin/stop-master.sh
sbin/stop-slaves.sh
cd /usr/local/hadoop/
sbin/stop-all.sh
cd /usr/local/hadoop/
sbin/start-all.sh
cd /usr/local/spark/
sbin/start-master.sh
sbin/start-slaves.sh
bin/spark-submit \
> --class org.apache.spark.examples.SparkPi \
> --master spark://master:7077 \
> examples/jars/spark-examples_2.11-2.0.2.jar 100 2>&1 | grep "Pi is roughly"
bin/spark-shell --master spark://master:7077
scala> val textFile = sc.textFile("hdfs://master:9000/README.md")
textFile: org.apache.spark.rdd.RDD[String] = hdfs://master:9000/README.md MapPartitionsRDD[1] at textFile at <console>:24
scala> textFile.count()
res0: Long = 99
scala> textFile.first()
res1: String = # Apache Spark
bin/spark-submit \
> --class org.apache.spark.examples.SparkPi \
> --master yarn-cluster \
> examples/jars/spark-examples_2.11-2.0.2.jar
bin/spark-shell --master yarn
scala> val textFile = sc.textFile("hdfs://master:9000/README.md")
textFile: org.apache.spark.rdd.RDD[String] = hdfs://master:9000/README.md MapPartitionsRDD[1] at textFile at <console>:24
scala> textFile.count()
res0: Long = 99
scala> textFile.first()
res1: String = # Apache Spark