Author: 罗道文

Spark+Kafka构建实时分析Dashboard案例——步骤四:结果展示

返回本案例首页
查看前一步骤操作:步骤三:Spark Streaming实时处理数据

《Spark+Kafka构建实时分析Dashboard案例——步骤四:结果展示》

开发团队:厦门大学数据库实验室 联系人:林子雨老师ziyulin@xmu.edu.cn

版权声明:版权归厦门大学数据库实验室所有,请勿用于商业用途;未经授权,其他网站请勿转载

本教程介绍大数据课程实验案例“Spark+Kafka构建实时分析Dashboard”的第四个步骤,结果展示。在本篇博客中,将介绍如何利用Flask-SocketIO向客户端发送消息以及客户端如何利用highcharts.js展示数据。

继续阅读

Spark+Kafka构建实时分析Dashboard案例——步骤三:Spark Streaming实时处理数据

返回本案例首页

查看前一步骤操作步骤二:数据处理和Python操作Kafka

《Spark+Kafka构建实时分析Dashboard案例——步骤三:Spark Streaming实时处理数据》

开发团队:厦门大学数据库实验室 联系人:林子雨老师ziyulin@xmu.edu.cn

版权声明:版权归厦门大学数据库实验室所有,请勿用于商业用途;未经授权,其他网站请勿转载

本教程介绍大数据课程实验案例“Spark+Kafka构建实时分析Dashboard”的第三个步骤,Spark Streaming实时处理数据。在本篇博客中,将介绍如何利用Spark Streaming实时接收处理Kafka数据以及将处理后的结果发给的Kafka。

继续阅读

Spark+Kafka构建实时分析Dashboard案例——步骤二:数据处理和Python操作Kafka

返回本案例首页
查看前一步骤操作步骤一:实验环境准备

《Spark+Kafka构建实时分析Dashboard案例——步骤二:案例介绍》

开发团队:厦门大学数据库实验室 联系人:林子雨老师ziyulin@xmu.edu.cn

版权声明:版权归厦门大学数据库实验室所有,请勿用于商业用途;未经授权,其他网站请勿转载

本教程介绍大数据课程实验案例“Spark+Kafka构建实时分析Dashboard”的第二个步骤,数据处理和Python操作Kafka。在本篇博客中,首先介绍如何预处理数据,以及如何使用Python操作Kafka。

继续阅读

Spark+Kafka构建实时分析Dashboard案例——步骤一:实验环境准备

返回本案例首页
《Spark+Kafka构建实时分析Dashboard案例——步骤一:实验环境准备》
开发团队:厦门大学数据库实验室 联系人:林子雨老师 ziyulin@xmu.edu.cn

版权声明:版权归厦门大学数据库实验室所有,请勿用于商业用途;未经授权,其他网站请勿转载

本教程介绍大数据课程实验案例“Spark+Kafka构建实时分析Dashboard案例”的第一个步骤,实验环境准备工作,有些软件的安装在相应的章节还会介绍。

继续阅读

Spark+Kafka构建实时分析Dashboard案例介绍

返回本案例首页
《Spark+Kafka构建实时分析Dashboard案例介绍》

开发团队:厦门大学数据库实验室 联系人:林子雨老师ziyulin@xmu.edu.cn

版权声明:版权归厦门大学数据库实验室所有,请勿用于商业用途;未经授权,其他网站请勿转载

本教程介绍大数据课程实验案例“Spark+Kafka构建实时分析Dashboard”。在本篇博客中,将要介绍本案例的总体架构,包括案例整体的运行流程以及每个过程具体执行内容。

继续阅读

使用Eclipse编写Spark应用程序(Scala+SBT)


点击这里观看厦门大学林子雨老师主讲《大数据技术原理与应用》授课视频
【版权声明】博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载!
[返回Spark教程首页]

之前有篇博客介绍了使用Eclipse编写Spark应用程序,采用的是maven工具。今天这篇博客同样是使用Eclipse编写Spark应用程序,但是使用的是sbt工具。下面开始我们的教程。

继续阅读

Spark2.0入门:Structured Streaming操作文件流

【版权声明】博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载!
[返回Spark教程首页]

Structured Streaming目前的支持的数据源有两种,一种是文件,另一种是网络套接字;Spark2.0入门:Structured Streaming操作概述这篇教程已经分析了如何从网络套接字读取并分析数据。因此,这篇文章来分析下,如何从文件流读取数据进行Structured Streaming。

继续阅读

Spark2.0入门:Structured Streaming操作网络流

【版权声明】博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载!
[返回Spark教程首页]

在Spark1.6版本,DStream是Spark Streaming的编程模型,而Spark2.0将流计算也统一到DataFrame里去了,提出了Structured Streaming编程模型;将数据源映射为类似于关系数据库中的表,然后将经过计算得到的结果映射为另一张表,完全以结构化的方式去操作流式数据,这种编程模型非常有利于处理分析结构化的数据;

继续阅读