Spark 2.1.0 入门:特征抽取 — TF-IDF(Python版)

大数据学习路线图

【版权声明】博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载!
返回Spark教程首页
推荐纸质教材:林子雨、郑海山、赖永炫编著《Spark编程基础(Python版)》

这一部分我们主要介绍和特征处理相关的算法,大体分为以下三类:

特征抽取:从原始数据中抽取特征
特征转换:特征的维度、特征的转化、特征的修改
特征选取:从大规模特征集中选取一个子集

特征提取

TF-IDF (HashingTF and IDF)

“词频-逆向文件频率”(TF-IDF)是一种在文本挖掘中广泛使用的特征向量化方法,它可以体现一个文档中词语在语料库中的重要程度。

​ 词语由t表示,文档由d表示,语料库由D表示。词频TF(t,d)是词语t在文档d中出现的次数。文件频率DF(t,D)是包含词语的文档的个数。如果我们只使用词频来衡量重要性,很容易过度强调在文档中经常出现,却没有太多实际信息的词语,比如“a”,“the”以及“of”。如果一个词语经常出现在语料库中,意味着它并不能很好的对文档进行区分。TF-IDF就是在数值化文档信息,衡量词语能提供多少信息以区分文档。其定义如下:

​ 此处 是语料库中总的文档数。公式中使用log函数,当词出现在所有文档中时,它的IDF值变为0。加1是为了避免分母为0的情况。TF-IDF 度量值表示如下:

    \[IDF(t,D) = log \frac{\left| D \right| + 1}{DF(t,D) + 1}\]

​ 此处

    \[\left| D \right|\]

是语料库中总的文档数。公式中使用log函数,当词出现在所有文档中时,它的IDF值变为0。加1是为了避免分母为0的情况。TF-IDF 度量值表示如下:

    \[TFIDF(t,d,D) = TF(t,d) \cdot IDF(t,D)\]

​ 在Spark ML库中,TF-IDF被分成两部分:TF (+hashing) 和 IDF。

TF: HashingTF 是一个Transformer,在文本处理中,接收词条的集合然后把这些集合转化成固定长度的特征向量。这个算法在哈希的同时会统计各个词条的词频。

IDF: IDF是一个Estimator,在一个数据集上应用它的fit()方法,产生一个IDFModel。 该IDFModel 接收特征向量(由HashingTF产生),然后计算每一个词在文档中出现的频次。IDF会减少那些在语料库中出现频率较高的词的权重。

​ Spark.mllib 中实现词频率统计使用特征hash的方式,原始特征通过hash函数,映射到一个索引值。后面只需要统计这些索引值的频率,就可以知道对应词的频率。这种方式避免设计一个全局1对1的词到索引的映射,这个映射在映射大量语料库时需要花费更长的时间。但需要注意,通过hash的方式可能会映射到同一个值的情况,即不同的原始特征通过Hash映射后是同一个值。为了降低这种情况出现的概率,我们只能对特征向量升维。i.e., 提高hash表的桶数,默认特征维度是 2^20 = 1,048,576.

在下面的代码段中,我们以一组句子开始。首先使用分解器Tokenizer把句子划分为单个词语。对每一个句子(词袋),我们使用HashingTF将句子转换为特征向量,最后使用IDF重新调整特征向量。这种转换通常可以提高使用文本特征的性能。
首先,导入TFIDF所需要的包:

 from pyspark.ml.feature import HashingTF,IDF,Tokenizer

准备工作完成后,我们创建一个简单的DataFrame,每一个句子代表一个文档。

sentenceData = spark.createDataFrame([(0, "I heard about Spark and I love Spark"),(0, "I wish Java could use case classes"),(1, "Logistic regression models are neat")]).toDF("label", "sentence")

在得到文档集合后,即可用tokenizer对句子进行分词

tokenizer = Tokenizer(inputCol="sentence", outputCol="words")
wordsData = tokenizer.transform(sentenceData)

得到分词后的文档序列后,即可使用HashingTF的transform()方法把句子哈希成特征向量,这里设置哈希表的桶数为2000。

hashingTF = HashingTF(inputCol="words", outputCol="rawFeatures", numFeatures=20)
featurizedData = hashingTF.transform(wordsData)

​可以看到,分词序列被变换成一个稀疏特征向量,其中每个单词都被散列成了一个不同的索引值,特征向量在某一维度上的值即该词汇在文档中出现的次数。

最后,使用IDF来对单纯的词频特征向量进行修正,使其更能体现不同词汇对文本的区别能力,IDF是一个Estimator,调用fit()方法并将词频向量传入,即产生一个IDFModel。

idf = IDF(inputCol="rawFeatures", outputCol="features")
idfModel = idf.fit(featurizedData)

很显然,IDFModel是一个Transformer,调用它的transform()方法,即可得到每一个单词对应的TF-IDF度量值。

rescaledData = idfModel.transform(featurizedData)
rescaledData.select("label", "features").show()

可以看到,特征向量已经被其在语料库中出现的总次数进行了修正,通过TF-IDF得到的特征向量,在接下来可以被应用到相关的机器学习方法中。