Spark入门:逻辑斯蒂回归分类器

大数据学习路线图

【版权声明】博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载!

[返回Spark教程首页]

方法简介

​ 逻辑斯蒂回归(logistic regression)是统计学习中的经典分类方法,属于对数线性模型。logistic回归的因变量可以是二分类的,也可以是多分类的。

基本原理

logistic分布

​ 设X是连续随机变量,X服从logistic分布是指X具有下列分布函数和密度函数:

    \[F(x)=P(x \le x)=\frac 1 {1+e^{-(x-\mu)/\gamma}}\]

    \[f(x)=F^{'}(x)=\frac {e^{-(x-\mu)/\gamma}} {\gamma(1+e^{-(x-\mu)/\gamma})^2}\]

​ 其中,

    \[\mu\]

为位置参数,

    \[\gamma\]

为形状参数。

    \[f(x)\]

    \[F(x)\]

图像如下,其中分布函数是以

    \[(\mu, \frac 1 2)\]

为中心对阵,

    \[\gamma\]

越小曲线变化越快。

二项logistic回归模型:

​ 二项logistic回归模型如下:

    \[P(Y=1|x)=\frac {exp(w \cdot x + b)} {1 + exp(w \cdot x + b)}\]

    \[P(Y=0|x)=\frac {1} {1 + exp(w \cdot x + b)}\]

​ 其中,

    \[x \in R^n\]

是输入,

    \[Y \in {0,1}\]

是输出,w称为权值向量,b称为偏置,

    \[w \cdot x\]

为w和x的内积。

参数估计

​ 假设:

    \[P(Y=1|x)=\pi (x), \quad P(Y=0|x)=1-\pi (x)\]

​ 则采用“极大似然法”来估计w和b。似然函数为:

    \[\prod_{i=1}^N [\pi (x_i)]^{y_i} [1 - \pi(x_i)]^{1-y_i}\]

​ 为方便求解,对其“对数似然”进行估计:

    \[L(w) = \sum_{i=1}^N [y_i \log{\pi(x_i)} + (1-y_i) \log{(1 - \pi(x_i)})]\]

​ 从而对

    \[L(w)\]

求极大值,得到

    \[w\]

的估计值。求极值的方法可以是梯度下降法,梯度上升法等。

示例代码

​ 我们以iris数据集(https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data)为例进行分析。iris以鸢尾花的特征作为数据来源,数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性,是在数据挖掘、数据分类中非常常用的测试集、训练集。为了便于理解,这里主要用后两个属性(花瓣的长度和宽度)来进行分类。由于目前 spark.ml 中只支持二分类,此处取其中的后两类数据进行分析。

1. 导入需要的包:
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.spark.ml.{Pipeline,PipelineModel}
import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.feature.{IndexToString, StringIndexer, VectorIndexer,HashingTF, Tokenizer}
import org.apache.spark.mllib.linalg.{Vector,Vectors}
import org.apache.spark.sql.Row
import org.apache.spark.mllib.stat.{MultivariateStatisticalSummary, Statistics}
import org.apache.spark.ml.classification.LogisticRegressionModel
2. 读取数据,简要分析:

​ 首先根据SparkContext来创建一个SQLContext,其中sc是一个已经存在的SparkContext;然后导入sqlContext.implicits._来实现RDD到Dataframe的隐式转换。

scala> val sqlContext = new SQLContext(sc)
sqlContext: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@10d83860
scala> import sqlContext.implicits._
import sqlContext.implicits._

​ 读取文本文件,第一个map把每行的数据用“,”隔开。比如数据集中,每行被分成了5部分,前4部分是鸢尾花的4个特征,最后一部分是鸢尾花的分类;前面说到,我们这里主要用后两个属性(花瓣的长度和宽度)来进行分类,所以在下一个map中我们获取到这两个属性,存储在Vector中。

scala> val observations=sc.textFile("G:/spark/iris.data").map(_.split(",")).map(p => Vectors.dense(p(2).toDouble, p(3).toDouble))
observations: org.apache.spark.rdd.RDD[org.apache.spark.mllib.linalg.Vector] = MapPartitionsRDD[14] at map at <console>:37

​ 接下来,调用mllib.stat中的统计方法得到数据的基本的统计信息,例如均值、方差等。*** QuickLaTeX cannot compile formula: "><code>colStats()</code></a> 方法返回一个 <a href="http://spark.apache.org/docs/1.6.2/api/scala/index.html#org.apache.spark.mllib.stat.MultivariateStatisticalSummary"><code>MultivariateStatisticalSummary</code></a>的实例,其中包含每列的最大值、最小值、均值等等。这里简单的列出了一些基本的统计结果。 <pre><code class="scala">scala> val summary: MultivariateStatisticalSummary = Statistics.colStats(observations) summary: org.apache.spark.mllib.stat.MultivariateStatisticalSummary = org.apache.spark.mllib.stat.MultivariateOnlineSummarizer@1a5462ad scala> println(summary.mean) [3.7586666666666666,1.1986666666666668] scala> println(summary.variance) [3.113179418344516,0.5824143176733783] scala> println(summary.numNonzeros) [150.0,150.0] </code></pre> ​ 用case class定义一个schema:Iris,Iris就是需要的数据的结构;然后读取数据,创建一个Iris模式的RDD,然后转化成dataframe;最后调用show()方法来查看一下部分数据。 <pre><code class="scala">scala> case class Iris(features: Vector, label: String) defined class Iris scala> val data = sc.textFile("G:/spark/iris.data") | .map(_.split(",")) | .map(p => Iris(Vectors.dense(p(2).toDouble, p(3).toDouble), p(4).toString())) | .toDF() data: org.apache.spark.sql.DataFrame = [features: vector, label: string] scala> data.show() +---------+-----------+ | features| label| +---------+-----------+ |[1.4,0.2]|Iris-setosa| |[1.4,0.2]|Iris-setosa| |[1.3,0.2]|Iris-setosa| |[1.5,0.2]|Iris-setosa| |[1.4,0.2]|Iris-setosa| |[1.7,0.4]|Iris-setosa| |[1.4,0.3]|Iris-setosa| |[1.5,0.2]|Iris-setosa| |[1.4,0.2]|Iris-setosa| |[1.5,0.1]|Iris-setosa| |[1.5,0.2]|Iris-setosa| |[1.6,0.2]|Iris-setosa| |[1.4,0.1]|Iris-setosa| |[1.1,0.1]|Iris-setosa| |[1.2,0.2]|Iris-setosa| |[1.5,0.4]|Iris-setosa| |[1.3,0.4]|Iris-setosa| |[1.4,0.3]|Iris-setosa| |[1.7,0.3]|Iris-setosa| |[1.5,0.3]|Iris-setosa| +---------+-----------+ only showing top 20 rows </code></pre> ​ 有的时候不需要全部的数据,比如ml库中的logistic回归目前只支持2分类,所以要从中选出两类的数据。这里首先把刚刚得到的数据注册成一个表iris,注册成这个表之后,就可以通过sql语句进行数据查询,比如这里选出了所有不属于``Iris-setosa''类别的数据。选出需要的数据后,把结果打印出来看一下,这时就已经没有``Iris-setosa''类别的数据。 <pre><code class="scala">scala> data.registerTempTable("iris") scala> val df = sqlContext.sql("select * from iris where label != 'Iris-setosa'") df: org.apache.spark.sql.DataFrame = [features: vector, label: string] scala> df.map(t => t(1)+":"+t(0)).collect().foreach(println) Iris-versicolor:[4.7,1.4] Iris-versicolor:[4.5,1.5] Iris-versicolor:[4.9,1.5] Iris-versicolor:[4.0,1.3] Iris-versicolor:[4.6,1.5] Iris-versicolor:[4.5,1.3] ... ... </code></pre> <h5>3. 构建ML的pipeline</h5> ​ 分别获取标签列和特征列,进行索引,并进行了重命名。 <pre><code class="scala">scala> val labelIndexer = new StringIndexer().setInputCol("label").setOutputCol("indexedLabel").fit(df) labelIndexer: org.apache.spark.ml.feature.StringIndexerModel = strIdx_a14ddbf05040 scala> val featureIndexer = new VectorIndexer().setInputCol("features").setOutputCol("indexedFeatures").fit(df) featureIndexer: org.apache.spark.ml.feature.VectorIndexerModel = vecIdx_755d3f41691a </code></pre> ​ 接下来,把数据集随机分成训练集和测试集,其中训练集占70%。 <pre><code class="scala">scala> val Array(trainingData, testData) = df.randomSplit(Array(0.7, 0.3)) trainingData: org.apache.spark.sql.DataFrame = [features: vector, label: string] testData: org.apache.spark.sql.DataFrame = [features: vector, label: string] </code></pre> ​ 然后,设置logistic的参数,这里我们统一用setter的方法来设置,也可以用ParamMap来设置(具体的可以查看spark mllib的官网)。这里设置了循环次数为10次,正则化项为0.3等,具体的可以设置的参数可以通过explainParams()来获取,还能看到程序已经设置的参数的结果。 <pre><code class="scala">scala> val lr = new LogisticRegression(). | setLabelCol("indexedLabel"). | setFeaturesCol("indexedFeatures"). | setMaxIter(10). | setRegParam(0.3). | setElasticNetParam(0.8) lr: org.apache.spark.ml.classification.LogisticRegression = logreg_a58ee56c357f scala> println("LogisticRegression parameters:\n" + lr.explainParams() + "\n") LogisticRegression parameters: elasticNetParam: the ElasticNet mixing parameter, in range [0, 1]. For alpha = 0, the penalty is an L2 penalty. For alpha = 1, it is an L1 penalty (default: 0.0, current: 0.8) featuresCol: features column name (default: features, current: indexedFeatures) fitIntercept: whether to fit an intercept term (default: true) labelCol: label column name (default: label, current: indexedLabel) maxIter: maximum number of iterations (>= 0) (default: 100, current: 10) predictionCol: prediction column name (default: prediction) probabilityCol: Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities (default: probability) rawPredictionCol: raw prediction (a.k.a. confidence) column name (default: rawPrediction) regParam: regularization parameter (>= 0) (default: 0.0, current: 0.3) standardization: whether to standardize the training features before fitting the model (default: true) threshold: threshold in binary classification prediction, in range [0, 1] (default: 0.5) thresholds: Thresholds in multi-class classification to adjust the probability of predicting each class. Array must have length equal to the number of classes, with values >= 0. The class with largest value p/t is predicted, where p is the original probability of that class and t is the class' threshold. (undefined) tol: the convergence tolerance for iterative algorithms (default: 1.0E-6) weightCol: weight column name. If this is not set or empty, we treat all instance weights as 1.0. (default: ) </code></pre> ​ 这里设置一个labelConverter,目的是把预测的类别重新转化成字符型的。 <pre><code class="scala">scala> val labelConverter = new IndexToString(). | setInputCol("prediction"). | setOutputCol("predictedLabel"). | setLabels(labelIndexer.labels) labelConverter: org.apache.spark.ml.feature.IndexToString = idxToStr_89b2b1508b35 </code></pre> ​ 构建pipeline,设置stage,然后调用fit()来训练模型。 <pre><code class="scala">scala> val pipeline = new Pipeline(). | setStages(Array(labelIndexer, featureIndexer, lr, labelConverter)) pipeline: org.apache.spark.ml.Pipeline = pipeline_33fa7f88685a scala> val model = pipeline.fit(trainingData) model: org.apache.spark.ml.PipelineModel = pipeline_33fa7f88685a </code></pre> ​ pipeline本质上是一个评估器(Estimator),当pipeline调用fit()的时候就产生了一个PipelineModel,本质上是一个转换器(Transformer)。然后这个PipelineModel就可以调用transform()来进行预测,生成一个新的DataFrame,即利用训练得到的模型对测试集进行验证。 <pre><code class="scala">scala> val predictions = model.transform(testData) predictions: org.apache.spark.sql.DataFrame = [features: vector, label: string, indexedLabel: double, indexedFeatures: vector, rawPrediction: vector, probabilit y: vector, prediction: double, predictedLabel: string] </code></pre> ​ 最后输出预测的结果,其中select选择要输出的列,collect获取所有行的数据,用foreach把每行打印出来。 <pre><code class="scala">scala> predictions. | select("predictedLabel", "label", "features", "probability"). | collect(). | foreach { case Row(predictedLabel: String, label: String, features: Vector, prob: Vector) => | println(s"( *** Error message: Unicode character 方 (U+65B9) leading text: $"><code>colStats()</code></a> 方 Unicode character 法 (U+6CD5) leading text: $"><code>colStats()</code></a> 方法 Unicode character 返 (U+8FD4) leading text: $"><code>colStats()</code></a> 方法返 Unicode character 回 (U+56DE) leading text: $"><code>colStats()</code></a> 方法返回 Unicode character 一 (U+4E00) leading text: $"><code>colStats()</code></a> 方法返回一 Unicode character 个 (U+4E2A) leading text: ...de>colStats()</code></a> 方法返回一个 You can't use `macro parameter character #' in math mode. leading text: ...apache.org/docs/1.6.2/api/scala/index.html# Unicode character 的 (U+7684) leading text: ...ultivariateStatisticalSummary</code></a>的 Unicode character 实 (U+5B9E)

label, features) --> prob=prob, predictedLabel=$predictedLabel")
| }
(Iris-versicolor, [3.5,1.0]) --> prob=[0.6949117083297265,0.30508829167027346], predictedLabel=Iris-versicolor
(Iris-versicolor, [4.1,1.0]) --> prob=[0.694606868968713,0.30539313103128685], predictedLabel=Iris-versicolor
(Iris-versicolor, [4.3,1.3]) --> prob=[0.6060637422536634,0.3939362577463365], predictedLabel=Iris-versicolor
(Iris-versicolor, [4.4,1.4]) --> prob=[0.5745401752760255,0.4254598247239745], predictedLabel=Iris-versicolor
(Iris-versicolor, [4.5,1.3]) --> prob=[0.6059493387519529,0.39405066124804705],
predictedLabel=Iris-versicolor
(Iris-versicolor, [4.5,1.5]) --> prob=[0.5423986730485701,0.45760132695142974],
... ...

4. 模型评估

​ 创建一个MulticlassClassificationEvaluator实例,用setter方法把预测分类的列名和真实分类的列名进行设置;然后计算预测准确率和错误率。

scala> val evaluator = new MulticlassClassificationEvaluator().
     |       setLabelCol("indexedLabel").
     |       setPredictionCol("prediction")
evaluator: org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator = mc
Eval_198b7e595a62
scala> val accuracy = evaluator.evaluate(predictions)
accuracy: Double = 0.9411764705882353
scala> println("Test Error = " + (1.0 - accuracy))
Test Error = 0.05882352941176472

​ 从上面可以看到预测的准确性达到94.1%,接下来可以通过model来获取训练得到的逻辑斯蒂模型。前面已经说过model是一个PipelineModel,因此可以通过调用它的stages来获取模型,具体如下:

scala> val lrModel = model.stages(2).asInstanceOf[LogisticRegressionModel]
lrModel: org.apache.spark.ml.classification.LogisticRegressionModel = logreg_a58ee56c357f
scala> println("Coefficients: " + lrModel.coefficients+"Intercept: "+lrModel.intercept+
     |         "numClasses: "+lrModel.numClasses+"numFeatures: "+lrModel.numFeatures)
Coefficients: [0.0023957582955816056,0.13015697498232498]Intercept: -0.8315687375527291numClasses: 2numFeatures: 2

子雨大数据之Spark入门
扫一扫访问本博客