Spark2.1.0入门:文件数据读写

【版权声明】博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载!
[返回Spark教程首页]

除了可以对本地文件系统进行读写以外,Spark还支持很多其他常见的文件格式(如文本文件、JSON、SequenceFile等)和文件系统(如HDFS、Amazon S3等)和数据库(如MySQL、HBase、Hive等)。数据库的读写我们将在Spark SQL部分介绍,因此,这里只介绍文件系统的读写和不同文件格式的读写。
继续阅读

Spark2.1.0入门:RDD编程

【版权声明】博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载!
[返回Spark教程首页]

通过前面几章的介绍,我们已经了解了Spark的运行架构和RDD设计与运行原理,并介绍了RDD操作的两种类型:转换操作和行动操作。
同时,我们前面通过一个简单的WordCount实例,也大概介绍了RDD的几种简单操作。现在我们介绍更多关于RDD编程的内容。
Spark中针对RDD的操作包括创建RDD、RDD转换操作和RDD行动操作。
继续阅读

Spark2.1.0入门:第一个Spark应用程序:WordCount

【版权声明】博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载。版权所有,侵权必究!
[返回Spark教程首页]

前面已经学习了Spark安装,完成了实验环境的搭建,并且学习了Spark运行架构和RDD设计原理,同时,我们还学习了Scala编程的基本语法,有了这些基础知识作为铺垫,现在我们可以没有障碍地开始编写一个简单的Spark应用程序了——词频统计。
继续阅读

Spark2.1.0入门:Spark的安装和使用


点击这里观看厦门大学林子雨老师主讲《大数据技术原理与应用》授课视频
【版权声明】博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载!
[返回Spark教程首页]
Spark可以独立安装使用,也可以和Hadoop一起安装使用。本教程中,我们采用和Hadoop一起安装使用,这样,就可以让Spark使用HDFS存取数据。需要说明的是,当安装好Spark以后,里面就自带了scala环境,不需要额外安装scala,因此,“Spark安装”这个部分的教程,假设读者的计算机上,没有安装Scala,也没有安装Java(当然了,如果已经安装Java和Scala,也没有关系,依然可以继续按照本教程进行安装),也就是说,你的计算机目前只有Linux系统,其他的软件和环境都没有安装(没有Java,没有Scala,没有Hadoop,没有Spark),需要从零开始安装所有大数据相关软件。下面,需要你在自己的Linux系统上(笔者采用的Linux系统是Ubuntu16.04),首先安装Java和Hadoop,然后再安装Spark(Spark安装好以后,里面就默认包含了Scala解释器)。本教程的具体运行环境如下:

  • Ubuntu16.04以上
  • Hadoop 2.7.1以上
  • Java JDK 1.7以上
  • Spark 2.1.0

继续阅读

Spark入门:标签和索引的转化:StringIndexer- IndexToString-VectorIndexer

【版权声明】博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载!

[返回Spark教程首页]


Spark的机器学习处理过程中,经常需要把标签数据(一般是字符串)转化成整数索引,而在计算结束又需要把整数索引还原为标签。这就涉及到几个转换器:StringIndexer、 IndexToString,OneHotEncoder,以及针对类别特征的索引VectorIndexer。

继续阅读

Spark入门:Word2Vec

【版权声明】博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载!

[返回Spark教程首页]


​ Word2Vec 是一种著名的 词嵌入(Word Embedding) 方法,它可以计算每个单词在其给定语料库环境下的 分布式词向量(Distributed Representation,亦直接被称为词向量)。词向量表示可以在一定程度上刻画每个单词的语义。
继续阅读

Spark入门:KMeans聚类算法

【版权声明】博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载!

[返回Spark教程首页]


聚类(Clustering) 是机器学习中一类重要的方法。其主要思想使用样本的不同特征属性,根据某一给定的相似度度量方式(如欧式距离)找到相似的样本,并根据距离将样本划分成不同的组。聚类属于典型的无监督学习(Unsupervised Learning) 方法。与监督学习(如分类器)相比1,无监督学习的训练集没有人为标注的结果。在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。
继续阅读

Spark入门:协同过滤算法

【版权声明】博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载!

[返回Spark教程首页]

一、方法简介

​ 协同过滤是一种基于一组兴趣相同的用户或项目进行的推荐,它根据邻居用户(与目标用户兴趣相似的用户)的偏好信息产生对目标用户的推荐列表。
继续阅读

Spark入门:决策树分类器

【版权声明】博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载!
[返回Spark教程首页]

一、方法简介

​ 决策树(decision tree)是一种基本的分类与回归方法,这里主要介绍用于分类的决策树。决策树模式呈树形结构,其中每个内部节点表示一个属性上的测试,每个分支代表一个测试输出,每个叶节点代表一种类别。学习时利用训练数据,根据损失函数最小化的原则建立决策树模型;预测时,对新的数据,利用决策树模型进行分类。
继续阅读