【版权声明】博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载!
[返回Spark教程首页]
这一部分我们主要介绍和特征处理相关的算法,大体分为以下三类:
- 特征抽取:从原始数据中抽取特征
- 特征转换:特征的维度、特征的转化、特征的修改
- 特征选取:从大规模特征集中选取一个子集
特征抽取
TF-IDF (HashingTF and IDF)
“词频-逆向文件频率”(TF-IDF)是一种在文本挖掘中广泛使用的特征向量化方法,它可以体现一个文档中词语在语料库中的重要程度。
词语由t表示,文档由d表示,语料库由D表示。词频TF(t,d)是词语t在文档d中出现的次数。文件频率DF(t,D)是包含词语的文档的个数。如果我们只使用词频来衡量重要性,很容易过度强调在文档中经常出现,却没有太多实际信息的词语,比如“a”,“the”以及“of”。如果一个词语经常出现在语料库中,意味着它并不能很好的对文档进行区分。TF-IDF就是在数值化文档信息,衡量词语能提供多少信息以区分文档。其定义如下:
此处
是语料库中总的文档数。公式中使用log函数,当词出现在所有文档中时,它的IDF值变为0。加1是为了避免分母为0的情况。TF-IDF 度量值表示如下:
在Spark ML库中,TF-IDF被分成两部分:TF (+hashing) 和 IDF。
TF: HashingTF 是一个Transformer,在文本处理中,接收词条的集合然后把这些集合转化成固定长度的特征向量。这个算法在哈希的同时会统计各个词条的词频。
IDF: IDF是一个Estimator,在一个数据集上应用它的fit()方法,产生一个IDFModel。 该IDFModel 接收特征向量(由HashingTF产生),然后计算每一个词在文档中出现的频次。IDF会减少那些在语料库中出现频率较高的词的权重。
Spark.mllib 中实现词频率统计使用特征hash的方式,原始特征通过hash函数,映射到一个索引值。后面只需要统计这些索引值的频率,就可以知道对应词的频率。这种方式避免设计一个全局1对1的词到索引的映射,这个映射在映射大量语料库时需要花费更长的时间。但需要注意,通过hash的方式可能会映射到同一个值的情况,即不同的原始特征通过Hash映射后是同一个值。为了降低这种情况出现的概率,我们只能对特征向量升维。i.e., 提高hash表的桶数,默认特征维度是 2^20 = 1,048,576.
在下面的代码段中,我们以一组句子开始。首先使用分解器Tokenizer
把句子划分为单个词语。对每一个句子(词袋),我们使用HashingTF
将句子转换为特征向量,最后使用IDF
重新调整特征向量。这种转换通常可以提高使用文本特征的性能。
首先,导入TFIDF所需要的包:
import org.apache.spark.ml.feature.{HashingTF, IDF, Tokenizer}
由于Spark2.0起,SQLContext
、HiveContext
已经不再推荐使用,改以SparkSession
代之,故本文中不再使用SQLContext
来进行相关的操作,关于SparkSession
的具体详情,这里不再赘述,可以参看Spark2.0的官方文档。
Spark2.0以上版本的spark-shell
在启动时会自动创建一个名为spark
的SparkSession
对象,当需要手工创建时,SparkSession
可以由其伴生对象的builder()
方法创建出来,如下代码段所示:
import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder().
master("local").
appName("my App Name").
getOrCreate()
和SQLContext
一样,也可以开启RDD
的隐式转换:
import spark.implicits._
准备工作完成后,我们创建一个简单的DataFrame
,每一个句子代表一个文档。
scala> val sentenceData = spark.createDataFrame(Seq(
| (0, "I heard about Spark and I love Spark"),
| (0, "I wish Java could use case classes"),
| (1, "Logistic regression models are neat")
| )).toDF("label", "sentence")
sentenceData: org.apache.spark.sql.DataFrame = [label: int, sentence: string]
在得到文档集合后,即可用tokenizer
对句子进行分词。
scala> val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words")
tokenizer: org.apache.spark.ml.feature.Tokenizer = tok_494411a37f99
scala> val wordsData = tokenizer.transform(sentenceData)
wordsData: org.apache.spark.sql.DataFrame = [label: int, sentence: string, words: array<string>]
scala> wordsData.show(false)
+-----+------------------------------------+---------------------------------------------+
|label|sentence |words |
+-----+------------------------------------+---------------------------------------------+
|0 |I heard about Spark and I love Spark|[i, heard, about, spark, and, i, love, spark]|
|0 |I wish Java could use case classes |[i, wish, java, could, use, case, classes] |
|1 |Logistic regression models are neat |[logistic, regression, models, are, neat] |
+-----+------------------------------------+---------------------------------------------+
得到分词后的文档序列后,即可使用HashingTF
的transform()
方法把句子哈希成特征向量,这里设置哈希表的桶数为2000。
scala> val hashingTF = new HashingTF().
| setInputCol("words").setOutputCol("rawFeatures").setNumFeatures(2000)
hashingTF: org.apache.spark.ml.feature.HashingTF = hashingTF_2591ec73cea0
scala> val featurizedData = hashingTF.transform(wordsData)
featurizedData: org.apache.spark.sql.DataFrame = [label: int, sentence: string,
words: array<string>, rawFeatures: vector]
scala> featurizedData.select("rawFeatures").show(false)
+---------------------------------------------------------------------+
|rawFeatures |
+---------------------------------------------------------------------+
|(2000,[240,333,1105,1329,1357,1777],[1.0,1.0,2.0,2.0,1.0,1.0]) |
|(2000,[213,342,489,495,1329,1809,1967],[1.0,1.0,1.0,1.0,1.0,1.0,1.0])|
|(2000,[286,695,1138,1193,1604],[1.0,1.0,1.0,1.0,1.0]) |
+---------------------------------------------------------------------+
可以看到,分词序列被变换成一个稀疏特征向量,其中每个单词都被散列成了一个不同的索引值,特征向量在某一维度上的值即该词汇在文档中出现的次数。
最后,使用IDF
来对单纯的词频特征向量进行修正,使其更能体现不同词汇对文本的区别能力,IDF
是一个Estimator
,调用fit()
方法并将词频向量传入,即产生一个IDFModel
。
scala> val idf = new IDF().setInputCol("rawFeatures").setOutputCol("features")
idf: org.apache.spark.ml.feature.IDF = idf_7fcc9063de6f
scala> val idfModel = idf.fit(featurizedData)
idfModel: org.apache.spark.ml.feature.IDFModel = idf_7fcc9063de6f
很显然,IDFModel
是一个Transformer
,调用它的transform()
方法,即可得到每一个单词对应的TF-IDF度量值。
scala> val rescaledData = idfModel.transform(featurizedData)
rescaledData: org.apache.spark.sql.DataFrame = [label: int, sentence: string, words: array<string>, rawFeatures: vector, features: vector]
scala> rescaledData.select("features", "label").take(3).foreach(println)
[(2000,[240,333,1105,1329,1357,1777],[0.6931471805599453,0.6931471805599453,1.3862943611198906,0.5753641449035617,0.6931471805599453,0.6931471805599453]),0]
[(2000,[213,342,489,495,1329,1809,1967],[0.6931471805599453,0.6931471805599453,0.6931471805599453,0.6931471805599453,0.28768207245178085,0.6931471805599453,0.6931471805599453]),0]
[(2000,[286,695,1138,1193,1604],[0.6931471805599453,0.6931471805599453,0.6931471805599453,0.6931471805599453,0.6931471805599453]),1]
可以看到,特征向量已经被其在语料库中出现的总次数进行了修正,通过TF-IDF得到的特征向量,在接下来可以被应用到相关的机器学习方法中。