
Performance Optimization of Analysis Rules

in Real-time Active Data Warehouses�

Ziyu Lin1, Dongzhan Zhang1,��, Chen Lin1, Yongxuan Lai2, and Quan Zou1

1 School of Information Science and Technology, Xiamen University, Xiamen, China
{ziyulin,zdz,chenlin,zouquan}@xmu.edu.cn

2 School of Software, Xiamen University, Xiamen, China
laiyx@xmu.edu.cn

Abstract. Analysis rule is an important component of a real-time active
data warehouse. Performance optimization of analysis rules may greatly
improve the system response time when a new event occurs. In this
paper, we carry out the optimization work through the following three
ways: (1)initiating non-real-time analysis rules as less as possible during
rush hour of real-time analysis rules; (2) executing non-real-time analysis
rules using the same cube at the same time interval; and (3) preparing
frequent cubes for the use of real-time analysis rules ahead of time. We
design the LADE system to get all the reference information required by
optimization work. A new algorithm, called ARPO, is proposed to carry
out the optimization work. Empirical studies show that our methods can
effectively improve the performance of analysis rules.

Keywords: analysis rules, real-time active data warehouses.

1 Introduction

In the past decades, data warehouses have been going through five different
stages, i.e. reporting, analyzing, predicting, operationalizing and active ware-
housing. Now real-time active data warehouses [1,2,3,4] are attracting more and
more attention due to the great benefits they bring to the organization.

Analysis rule[1] is a very important part of a real-time active data warehouse.
It detects the occurrence of events and initiates analysis process, during which
multi-dimensional data will be used. If certain condition evaluates to be TRUE,
the corresponding action will be triggered, such as sending alerts to analysis
workers. Up to date, most of the research work on analysis rule is focused on its
mechanism (e.g. [5,1]). In fact, performance optimization of analysis rules is also
a critical aspect, though, to the best of our knowledge, there is still no published
work on it. If more attention is paid to the optimization work, we can on one

� Supported by the Fundamental Research Funds for the Central Universities under
Grant No. 2011121049, the Natural Science Foundation of Fujian Province of China
under Grant No. 2011J05158 and 2011J05156, and the Natural Science Foundation
of China under Grant No. 61001013 and 61102136.

�� Corresponding author.

Q.Z. Sheng et al. (Eds.): APWeb 2012, LNCS 7235, pp. 669–676, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



670 Z. Lin et al.

hand make full use of system resources, and on the other hand, achieve better
performance for analysis rules.

In this paper, we propose the issue of performance optimization of analysis
rules in real-time active data warehouses. Here analysis rules are divided into
two types, namely, real-time analysis rules and non-real-time analysis rules. We
define rush hour and frequent cubes for real-time analysis rules, and cube using
pattern for non-real-time analysis rules. Our optimization work is focused on
three aspects: (1)initiating non-real-time analysis rules as less as possible during
rush hour of real-time analysis rules; (2) executing non-real-time analysis rules
using the same cube at the same time interval; and (3) preparing frequent cubes
for the use of real-time analysis rules ahead of time. The LADE(Log data mining-
based Active Decision Engine) system is designed to help get all the reference
information required by optimization work, such as rush hour, cube using pattern
matrix and frequent cube matrix. Then we give a new algorithm, called ARPO
(Analysis Rule Performance Optimization), to carry out the optimization work.
We also conduct experiments in LADE system, and the results show that our
method can effectively improve the performance of analysis rules in real-time
active data ware houses.

The remainder of this paper is organized as follows: Sect. 2 gives problem
statement. In Sect. 3, we introduce the LADE system first, followed by the
detailed description of getting reference information for optimization work. In
Sect. 4, we will show how to carry out the optimization work. The experiment
results are reported in Sect. 5. Sect. 6 discusses the related work. Finally, we
give the discussion and conclusion in Sect. 7.

2 Problem Statement

Compared to the traditional data warehouse, a real-time active data warehouse
usually has an additional component called ”real-time data cache”, which stores
all the real-time data. Through CDC(Change Data Capture), data change oc-
curring in the OLTP system can be captured and propagated to the real-time
data cache and active decision engine. The active engine is composed of event
model, rule model, action model and meta-data model. Event model detects the
occurrence of events, and rule model runs analysis rules after the occurrence of
certain event. If a rule evaluates to be TRUE, the corresponding action will be
triggered, such as notifying the analysis workers. Such process is called active
decision making, during which the active decision engine may access the OLAP
server for the required cubes. User may define the analysis rules for the active
decision engine, and deal with the problems and conflicts that need to be treated
manually.

Analysis rules can be classified into two types: real-time analysis rules and
non-real-time analysis rules. The former, denoted R, after being triggered, makes
real-time decision, which will be fed back to operational system to satisfy real-
time business requirements. The latter, denoted N , after being initiated, makes
decision usually not for the purpose of real-time applications.



Performance Optimization of Analysis Rules 671

Analysis rules use cubes to carry out multi-dimensional analysis. With the
help of cube using pattern (see Definition 1), we can initiate, during the same
period as much as possible, those non-real-time analysis rules that access the
same cube. The detailed information about how a cube is defined can be found
in [1].

Also, by generating frequent cubes those are most accessed in certain period
ahead of time for a real-time analysis rule R, we can greatly improve the perfor-
mance of R in some cases. As far as non-real-time analysis rules are concerned,
the concept of frequent cube is not so useful, since they do not make real-time
decision.

Problem Statement. Given a set of real-time analysis rules S1 = {R1,R2, ...,
Rm} and a set of non-real-time analysis rules S2 = {N1,N2, ...,Nn}, performance
optimization of analysis rules works as follows:

– find the rush hour
⋃
[ta, tb), and during these time intervals, initiate the

rules in S2 as less as possible;
– find those rules in S2 that use the same cubes in the multi-dimensional

analysis process, and initiate them at the same period as much as possible;
– find the frequent cubes for certain period [t1, t2), and prepare these cubes

for the rules in S1 before t1.

3 Getting the Information for Performance Optimization

3.1 The LADE System

The LADE system designed by us is used to perform data mining based on the
log of analysis rules. As is shown in Fig.1, in LADE, we extend the traditional
architecture of active decision engine [5] by adding the logging component, called
action log, to record all the necessary information about analysis rules, such as
ID, IsRealTime, RuleInfoID, CubeID and Time.

Events

Data

Data miningMeta Data

Cube

Conditions

Rules

D
e
f
i
n
e
 
r
u
l
e
s

P
r
o
b
l
e
m
s

&
c
o
n
f
l
i
c
t
s

Define rules

Results

User
Use data mining

Results

Access meta data

D
e
c
i
s
i
o
n
sT1 T2 T3

Actions

Log

Fig. 1. The architecture of active decision engine in the LADE system



672 Z. Lin et al.

3.2 Cube Using Pattern

Definition 1. Cube Using Pattern Matrix: Let C={c0,c1,...,cm−1} and I =
n−1⋃

j=0

[tj, tj+1), where ci is a cube, m is the number of cubes used by all non-real-

time analysis rules, [tj, tj+1) is a unit interval, and n is the number of unit
intervals that a day is divided into. Frequent cube matrix is an m × n matrix
U = (uij) such that uij = p, where p is null or a pointer pointing to a link list.

In Definition 1, the link list, pointed by uij , is used to store the RuleInfoID of
all those non-real-time analysis rules that use cube ci during time interval [tj ,
tj+1). Cube using pattern matrix, U , can be stored in memory for the use of
performance optimization algorithm, and we can get it from the action log.

3.3 Frequent Cube

Definition 2. Frequent Cube Matrix: Let C={c0,c1,...,cm−1} and I =
n−1⋃

j=0

[tj, tj+1), where ci is a cube, m is the number of cubes used by real-time

analysis rules, [tj, tj+1) is a unit interval, and n is the number of unit intervals
that a day is divided into. Frequent cube matrix is an m × n matrix A = (aij)
such that

aij =

{
1 if ci is a frequent cube for [tj , tj+1)
0 otherwise

Frequent cube matrix A can be easily maintained in memory to enhance the
performance of optimization algorithm. Also it can be easily extended according
to our requirements.

4 Performance Optimization with ARPO Algorithm

Performance optimization work is based on the necessary reference information
such as rush hour, cube using pattern matrix and frequent cube matrix. System
will do the optimization work whenever an analysis rule is initiated. Algorithm
1 shows the process of performance optimization, in which, qi in the 15th line is
used to store the RuleInfoID of all those rules using ci. When a rule is initiated,
if it is a real-time analysis rule, system will generate the required cube for it. Also,
if the cube is a frequent cube for the current time interval, it will be materialized
for the use of other coming real-time analysis rules, which will be a great help for
improving the performance of those rules. If a non-real-time analysis rule L is
initiated, system will first judge if it is rush hour now, or if there are other rules
using the same cube as L. If either one of the two conditions evaluates to be
TRUE, L will be enqueued into a waiting queue q, which accommodates all those
rules sharing the same cube. At an appropriate time, the rules in the waiting
queue will be dequeued and continue their analysis process. In this way, system
may just generate the required cube one time to satisfy all those rules from the
same waiting queue, which also greatly improves the system performance.



Performance Optimization of Analysis Rules 673

Algorithm 1. ARPO(A,U, L, S)

Input : 1: frequent cube matrix A
2: cube using pattern matrix U
3: analysis rule L
4: rush hour set S

Output: 1: execution result

begin1

get the time interval [tj , tj+1) to which the current time belongs;2

i← L. CubeID;3

if L. IsRealTime=TRUE then4

generate the cube ci if not exist;5

execute L;6

if A[i][j] = 1 then7

materialize the cube ci if it has not been materialized;8

else9

delete cube ci;10

end11

return execution result of L;12

else13

if ([tj, tj+1) ∈ S) or (U [i][j] �= NULL) then14

initialize a waiting queue qi if not exist;15

put L. RuleInfoID into qi;16

return qi;17

end18

end19

end20

5 Empirical Study

In this section, we report the performance evaluation of our method. The al-
gorithms are implemented with C++. All the experiments were conducted on
Intel i7-2600 3.40GHz CPU, 16.0GB memory DELL PC running Windows 7 and
Oracle 11g.

In the LADE system, we use the TPC benchmark TPC-H to get the required
datasets. We have been running the LADE system for several months. The ac-
tion log contains three month of data, from which we can get the rush hour set
S, cube using pattern matrix U and frequent cube matrix A.

Experiment 1. We design 50 real-time analysis rules which will use 30 cubes
all together in the analysis process. We change the value of f , the percent of
frequent cubes to the overall 30 cubes, from 10% to 50%. Fig.2 shows the change
of t1/t2 during this process, where t1 is the total time cost for the execution
of all these 50 rules without optimization work, and t2 is the time cost with
optimization work. We can get from the experiment result that frequent cube
plays an important role in decreasing the execution time of real-time analysis
rules. ARPO algorithm can make full use of frequent cubes in the process of



674 Z. Lin et al.

10 20 30 40 50
0.0

0.5

1.0

1.5

2.0

2.5

3.0

 

 

t 1 / 
t 2

frquent cube percent (%)

Fig. 2. Time cost ratio

10 20 30 40 50 60 70 80

0.05

0.10

0.15

0.20

0.25

0.30

0.35

 

 

m
is

si
ng

 r
at

e

frequent cube percent (%)

 With optimization
 Without optimization

Fig. 3. Missing rate

10 20 30 40 50
1.0

1.5

2.0

2.5

3.0

3.5

 

 

t 1 / 
t 2

frequent cube percent (%)

 ARPO
 FPUS
 BPUS

Fig. 4. Time cost ratio comparison

10 20 30 40 50 60 70 80
0.00

0.05

0.10

0.15

0.20

0.25

0.30

 

 

m
is

si
ng

 r
at

e

frequent cube percent (%)

 ARPO
 FPUS
 BPUS

Fig. 5. Missing rate comparison

performance optimization. For example, when f=50%, time cost ratio t1/t2 can
reach a high value of 3.22.

Experiment 2. If a cube required by a real-time analysis rule is not available
right now, which means that it needs to be generated upon the time of require-
ment, we say that the real-time analysis rule misses this cube. Here we define
a new variable r = a1/a2, where a1 is the total times that real-time analysis
rules miss cubes during a period of time T , and a2 is the total times that real-
time analysis rules require cubes during T . Just as Experiment 1, we change
the percent of frequent cubes to the overall 30 cubes from 10% to 80%. From
the experiment result in Fig.3, we can get that ARPO algorithm can reduce
missing rate greatly. When f = 10%, the values of r before and after optimiza-
tion are 0.32 and 0.305 respectively. When f = 80%, they are 0.207 and 0.054
respectively.

Experiment 3. Some desirable methods used to deal with the issue of material-
ized view selection, such as FPUS [6] and BPUS [7], may also help to improve the
performance of real-time analysis rules, because they maintain those frequently-



Performance Optimization of Analysis Rules 675

used cubes in the system. Fig.4 shows the time cost ratio of ARPO compared
with those of FPUS and BPUS, from which we can get that, ARPO may achieve
much better performance than both FPUS and BPUS. As far as ARPO is con-
cerned, the larger the value of f is, the greater the performance improvement
is. However, for FPUS and BPUS, the value of t1/t2 only change a little when
the value of f changes between 10% and 50%. For example, when f=50%, the
value of t1/t2 for ARPO is 3.22, and for FPUS and BPUS, however, they are
only 1.9 and 1.7 respectively. Fig.5 shows the missing rate of ARPO compared
with those of FPUS and BPUS. We can observe that, the value of f has much
more influence on ARPO than on FPUS and BPUS. In another word, ARPO
may take better use of frequent cubes than both FPUS and BPUS.

6 Related Work

Real-time active data warehouse is attracting more and more attention due to
the great benefits it may bring to organizations. It can support both strategic
and tactic decisions. Analysis rule is a very important part of the real-time data
warehouse, which is based on the knowledge developed in the field of active
database systems. Paton et al. in [8] do a lot of survey work in active database
system. This survey presents the fundamental characteristics of active database
systems, describes a collection of representative systems within a common frame-
work, considers the consequences for implementations of certain design decisions,
and discusses tools for developing active applications.

In [5], Schrefl et al. introduce the conception of ECA rules from active
database system into the field of data warehouses, and applies the idea of event-
condition-action rules (ECA rules) to automate repetitive analysis and decision
tasks in data warehouses. The work of an analyst is mimicked by analysis rules,
which extend the capabilities of conventional ECA rules in order to support mul-
tidimensional analysis and decision making. In [5], the authors also present the
architecture of active data warehouse, and describe in detail the knowledge of
event model, action model, analysis graph and analysis rules.

In [9], Tho et al. combine (1) an existing solution for the continuous data
integration and (2) the known approach of active data warehousing by introduc-
ing protocols that enable the correct collaboration between the two. Therefore,
analysis rules can operate on real-time data.

Up to date, the research work in the field of real-time active data warehouses
mostly focuses on the aspects such as the architecture of real-time active data
warehouse [9], real-time data integration, real-time data modeling, time consis-
tency [10], query optimization, scalability, real-time alerting, and so on.

7 Discussion and Conclusion

In this paper, we focus on the performance optimization of analysis rules in
real-time active data warehouses. The LADE system is designed to get all the
reference information required by optimization work, and a new algorithm, called



676 Z. Lin et al.

ARPO, is proposed to carry out the optimization work based on the reference in-
formation. Extensive experiments show that our method can effectively improve
the system performance of analysis rules.

References

1. Thalhammer, T., Schrefl, M., Mohania, M.: Active Data Warehouses: complement-
ing OLAP with Analysis Rules. Data and Knowledge Engineering 39, 241–269
(2001)

2. Chen, L., Rahayu, J.W., Taniar, D.: Towards Near Real-Time Data Warehousing.
In: 24th IEEE International Conference on Advanced Information Networking and
Applications, pp. 1150–1157. IEEE press, New York (2010)

3. Polyzotis, N., Skiadopoulos, S., Vassiliadis, P., Simitsis, A., Frantzell, N.: Sup-
porting Streaming Updates in an Active Data Warehouse. In: 23rd International
Conference on Data Engineering, pp. 476–485. IEEE Press, New York (2007)

4. Lin, Z.Y., Lai, Y.X., Lin, C., Xie, Y., Zou, Q.: Maintaining Internal Consistency of
Report for Real-Time OLAP with Layer-Based View. In: Du, X., Fan, W., Wang,
J., Peng, Z., Sharaf, M.A. (eds.) APWeb 2011. LNCS, vol. 6612, pp. 143–154.
Springer, Heidelberg (2011)

5. Schrefl, M., Thalhammer, T.: On Making Data Warehouses Active. In: Kam-
bayashi, Y., Mohania, M., Tjoa, A.M. (eds.) DaWaK 2000. LNCS, vol. 1874, pp.
34–46. Springer, Heidelberg (2000)

6. Tan, H.X., Zhou, L.X.: Dynamic selection of materialized views of multi-
dimensional data. Journal of Software 13(6), 1090–1096 (2002)

7. Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes efficiently.
In: ACM SIGMOD 1996 International Conference on Management of Data, pp.
205–216. ACM Press, New York (1996)

8. Paton, N.W., Diaz, O.: Active Database Systems. ACM Computing Surveys 31(1),
63–103 (1999)

9. Tho, M.N., Tjoa, A.M.: Zero-Latency Data Warehousing for Heterogeneous Data
Sources and Continuous Data Streams. In: 5th International Conference on In-
formation Integrationand Web-based Applications Services, pp. 55–64. Austrian
Computer Society, Vienna (2003)

10. Bruckner, R.M., Tjoa, A.M.: Capturing Delays and Valid Times in Data
Warehouses-Towards Timely Consistent Analyses. Journal of Intelligent Informa-
tion Systems 19(2), 169–190 (2002)


	Lecture Notes in Computer Science
	Introduction
	Problem Statement
	Getting the Information for Performance Optimization
	The LADE System
	Cube Using Pattern
	Frequent Cube

	Performance Optimization with ARPO Algorithm
	Empirical Study
	Related Work
	Discussion and Conclusion


