
User-oriented Materialized View Selection∗

Ziyu Lin∗ Dongqing Yang∗ Guojie Song‡† Tengjiao Wang∗

∗School of Electronics Engineering and Computer Science, Peking University, Beijing, China

‡State Key Laboratory of Machine Perception, Peking University, Beijing, China

cainiu@263.net;{dqyang, gjsong, tjwang}@pku.edu.cn

Abstract

The problem of materialized view selection has been
long researched, and many approaches have been proposed
to deal with this issue. However, all the methods proposed
to date strive toward improving the overall query perfor-
mance, instead of being user-oriented. In this paper, we
propose a new user-oriented method, called SOMES (uSer-
Oriented Materialized viEw Selection), aiming at achiev-
ing better performance for view selection problem. SOMES
takes into account query characteristics of different users,
in which, users are classified into different groups accord-
ing to their query characteristics, and various user groups
are provided with their own windows, user view windows
containing the views involved in their own query process.
Experimental results show that our method can achieve de-
sirable performance improvements over other methods such
as BPUS and FPUS.

1 Introduction

The problem of materialized view selection can be ab-
stractly modeled as follows [1]: given a set of queries and
a number of cost-determining parameters (e.g. query fre-
quency), output a set of view definitions that minimizes a
cost function and satisfies a number of constraints.

Many solutions as been proposed in recent years (e.g.
[2, 4, 7, 8]), often suggesting elaborate greedy, heuristic
or randomized optimization algorithms. However, all the
methods proposed to date strive toward improving the over-
all query performance, instead of being user-oriented. In
another word, they do not take into consideration the dif-
ferent types of users and specific characteristics of user

∗Supported by the Natural Science Foundation of China under Grant
No. 60473051 and China HP Co. and Peking University joint project
(Scalable, Real-Time and Active MPP based Data Warehouse for Telecom-
munication Industry).

†Corresponding author

queries. This will sometimes lead to undesirable results in
real life application. More details about this will be dis-
cussed in Section 3.

Queries of certain type of users usually have distinct
features. However, hardly will there be any feature if we
put queries of different types of users together. Based on
this, we here propose a new user-oriented method, called
SOMES (uSer-Oriented Materialized viEw Selection), aim-
ing at achieving better performance for view selection prob-
lem. SOMES takes into account query characteristics of
different users, in which, users are classified into different
groups according to their query characteristics, and vari-
ous user groups are provided with their own windows, user
view windows containing the views involved in their own
query process. Experimental results show that our method
can achieve desirable performance improvements over other
available ones such as BUPS [5] and FPUS [7].

To better deal with materialized view selection prob-
lem, we proposed in our previous work a method
called MUMW(Multi-User Multi-Window)[10] similar to
SOMES. The differences between MUMW and SOMES
mainly include:
• In MUMW, every user has a window, while in

SOMES, every user group a window.
• In MUMW, users are classified into three types accord-

ing to their roles in the organization, while in SOMES,
the classification is based on query characteristics.

• The space allocation and view selection processes of
the two methods are much different.

The remainder of this paper is organized as follows: Sec-
tion 2 gives related work, followed by discussion on view
selection methods in Section 3. Section 4 presents our
method in detail. Experimental results are reported in Sec-
tion 5. Finally, we conclude this paper in Section 6.

2 Related Work

There is a substantial body of work dealing with se-
lecting views to materialize in data warehouses. In [9],

Seventh International Conference on Computer and Information Technology

0-7695-2983-6/07 $25.00 © 2007 IEEE
DOI 10.1109/CIT.2007.59

133



Theodoratos et al proposed a method for constructing
search spaces for materialized view selection. In [5], lattice
of data cube was presented for the first time, and the author
presented a greedy algorithm called BPUS with time com-
plexity of O(kn2), which takes the benefits per unit space as
the criterion of view selecting. In [2], the author discussed
view selecting with B-tree indexing. An algorithm called
PBS was presented in [4], which adopts view size as view
selection criterion and its time complexity is O(kn2).

All the methods above are based on such assumption
that the probability distribution of queries is available, or
all queries access the data with the same probability. In
fact, however, such assumption is usually not the truth, be-
cause the users can hardly give the probability distribution
of queries. For this reason, in [7, 8], the relating informa-
tion about queries is maintained by systems, especially, in
[7] the author proposed a new algorithm called FPUS with
time complexity of O(nlog2n), which takes as criterion the
frequency of unit space. In [8], nearest materialized parent
view was presented, and B+-tree was used to create the in-
dex of aggregated views. In addition, other methods were
proposed in [3, 6] etc.

3 Discussion on view selection methods

Definition 1.Global view window : Global view window,
denoted by GVW, is system-allocated space with an upper
bound on size, which is used to store materialized views.

Definition 2.Accessed view set : Accessed view set of a
query q, denoted by R(q), is a set including all the views
that q accesses. Accessed view set of a user u is defined as
R(u) =

⋃n
i=1 R(qi), where q1, q2, ... , qn are n queries

initiated by user u.

Usually, application system may receive a lot of OLAP
queries from different users. In all the traditional view se-
lection methods, all users are seen to be with same char-
acteristics and are not dealt with discriminatingly. In fact,
however, there can be typically three types of users in or-
ganizations, i.e., decision makers, managers and ordinary
workers, whose queries features may be much different
from each other. In traditional methods, there is only one
GVW, and all the views involved in query process compete
with each other to go into GVW. Obviously, characteristics
of different types of users are ignored, which may bring the
following problems in real life application:

Frequent view adjusting: Views in user’s accessed
view set go into and out GVW repeatedly and unreason-
ably. For example, now we assume that there is no space left
in GVW, and all users, except u1 and u2, continue query-
ing with the same characteristics as before, whereas u1 and
u2, with much different query characteristics, change their
query behavior alternately. During the time period T1, if

u1 starts queries more frequently than u2, then the system
would put more views of R(u1) into GVW. At the same
time, some or all of the views from R(u2) would be deleted
from GVW. While during the time period T2, if u2 starts
queries more frequently than u1, then the system would be-
have contrarily, i.e., selecting more views from R(u2) into
GVW and deleting some or all of the views from R(u1). If
such case occurs again and again, it would lead to views’
continuously going into and out GVW, which will be much
more frequent when there are many users in the system.

Never selected views: Views in the R(u) of some users
may seldom or even never get any chance to enter into
GVW. For example, for those methods taking ”large-size-
first” as view selection criterion, views in R(u) of user u
can not enter into GVW at all, even though u starts queries
frequently, because the size of views in R(u) are usually
smaller than that of the views in the accessed view sets of
other users. Other methods involve the same issue unex-
ceptionally, since they all ignore the respective query char-
acteristics of different users and make views belonging to
different R(u) compete together with each other.

4 User-oriented Materialized View Selection

In this part, we will first give some definitions, followed
by the description of our method. Then we present algo-
rithms for space allocation and view selection. Finally, the
advantages of our method are discussed.

4.1 Definitions

Definition 3.Multidimensional data query : Query q on
a set of multidimensional data MD can be seen as an op-
eration getting a slice or block of data from MD. Here
q = {(l1, R1), (l2, R2), ..., (ld, Rd)}, where d denotes the
number of dimensions of MD; li, certain level in dimension
di; Ri, the selected range of li.

In Definition 3, if there is no constraint on the selec-
tion range, then we can label Ri with ”ALL”. When Ri

is < ri1, ri2 >, we can get a block of data in the range
of < ri1, ri2 >. When Ri is {ri1, ri2, ..., rin}, we get
n slices of data in the range of < ri1, rin >. Further-
more, if < ri1, ri2 > is dom(li), namely the range is the
overall dimension, then there is no need to write the tu-
ple (li, Ri), and it can be ignored. For example, q =
{(l1, R1), (l3, R3), ..., (ld, Rd)}, where (l2, R2) is ignored.

Definition 4.Completely-aggregated view : In Definition
3, if, for every dimension, it satisfies such condition that
Ri = ALL or that Ri =< ri1, ri2 > is dom (li) , then we
refer to q as a completely-aggregated view, denoted by CV.

Definition 5.Partly-aggregated view : In Definition 3, if
there exists at least one i which satisfies li �= ALL, then we

134



refer to q as a partly-aggregated view, denoted by PV.

Definition 6.Public view window : Public view win-
dow, denoted by PVW, is referred to as system-allocated
space with an upper bound of size. PVW includes CVD
(Completely-aggregated View District) and PVD (Partly-
aggregated View District). These two districts are used to
store those materialized completely-aggregated views and
partly-aggregated views selected by certain algorithm re-
spectively.

Definition 7.User view window : User view window, de-
noted by UVW, is referred to as system-allocated space with
an upper bound of size. It is used to store users’ partly-
aggregated views selected by certain algorithm.

In order to help better understand the following content,
we give a list for the acronyms of the terms used in this
paper in Table 1.

Acronym Term
GVW Global View Window
PVW Public View Window
UVW User View Window
CV Completely-aggregated View
PV Partly-aggregated View

CVD Completely-aggregated View District
PVD Partly-aggregated View District
CVS Completely-aggregated View Set
PVS Partly-aggregated View Set

Table 1. The term acronym list

4.2 Description of SOMES

As Figure 1 shows, in our method, we design a PVW in
the GVW. A PVW is used to store all materialized CVs and
some qualified PVs. PVS contains all the candidate PVs in
the system, and CVS all the CVs.

Users are grouped based on their query characteristics
(in Figure 1, for simplification, we only give three different
user groups). Here we assume that users have already been
classified into different groups, and we will give in another
paper the details on how to group users. Every user group is
allocated with a UVW, which contains all the materialized
views accessed by certain user group. When a CV is used
by more than one groups, it will enter into CVD. Also, for
a PV, it will enter into PVD if it is shared by more than one
groups.

The reason for PVW being divided into PVD and CVD,
is due to the difference between PV and CV. Usually, a CV
can be used to answer more queries than a PV, since a PV
is in fact a multi-dimensional range fragment. Sometimes,
a query may get result only from several PVs combined.
Therefore, under certain space constraint, it may bring more
benefits if more space is allocated to CVD. However, this
does not necessarily mean that all the space of PVW should
always be for the used of CV. Sometimes, there are some
frequently accessed PVs, and, if materialized, they will also
bring great benefits.

GVW

PVW

CVD

PVD

UVW

UVW_u1

PVS

UVW_u2

UVW_u3

2

4

3

CVS

1

Figure 1. Different windows in SOMES

4.3 Space allocation

In our method, different types of user groups use
their corresponding types of UVW−u. This guarantees
that query characteristics of different groups may not be
”killed”.

Table 2 shows the parameters for controlling space allo-
cation among different types of windows. For these param-
eters, there exist rUU1+rUU2+rUU3 = 1, rUG+rPG = 1,
and rPP + rCP = 1. Additionally, the values of these pa-
rameters can be optimally defined only after a period of
time of application. After these parameters are defined,
we can further get other parameters such as SCV D−DOWN

(size lower bound of CVD), SPV D−UP (size upper bound
of PVD), SUV W (unchangeable size of UVW), SUV W−u1

(unchangeable size of UVW−u1), SUV W−u2 (unchange-
able size of UVW−u2) and SUV W−u3 (unchangeable size
of UVW−u3). Table 3 gives the computation methods of
these parameters.

Parameter Definition
rPG the size ratio of PVW to GVW
rUG the size ratio of UVW to GVW
rCP the size ratio of CVD to PVW
rPP the size ratio of PVD to PVW
rUU1 the size ratio of UVW−u1 to UVW
rUU2 the size ratio of UVW−u2 to UVW
rUU3 the size ratio of UVW−u3 to UVW

Table 2. Parameter definition

Parameter Computation method
SCV D−DOW N SGV W × rPG × rCP

SPV D−UP SGV W × rP G × rP P

SUV W SGV W × rUG

SUV W−u1 SUV W × rUU1

SUV W−u2 SUV W × rUU2

SUV W−u3 SUV W × rUU3

Table 3. Parameter computation

The relationships of the sizes of different types of win-
dows are as follows:

SGV W = SCV D + SPV D + SUV W ;
SUV W = SUV W−u1 + SUV W−u2 + SUV W−u3 ;
Among all the windows, the space of CVD and PVD

is changeable with SCV D−DOWN as the size lower bound
of CVD and SPV D−UP as the size upper bound of PVD
respectively. Determination on how to dynamically allo-
cate space to PVD and CVD is based on the comparison

135



Algorithm 1: Dynamic space allocating
Input : 1: SPV D−UP , the size upper bound of PVD

2: SCV D−DOW N , the size lower bound of CVD
3: SPV W , the size of PVW
4: α, size changing rate
5: SPV D , the current size of PVD
6: SCV D , the current size of CVD

Output: 1:SPV D , the changed size of PVD
2:SCV D , the changed size of CVD

begin1
if AverageBenefit(CVD)≥AverageBenefit(PVD) then2

SCV D ← SCV D + α× SP V D−UP ;3
SPV D ← SPV D − α× SPV D−UP ;4
if SCV D ≥ SPV W then5

SCV D ← SP V W ;6
SPV D ← 0;7

end8
else9

SCV D ← SCV D − α× SP V D−UP ;10
SPV D ← SPV D + α× SPV D−UP ;11
if SCV D ≤ SCV D−DOW N then12

SCV D ← SCV D−DOW N ;13
SPV D ← SPV D−UP ;14

end15
end16
return SPV D ,SPV D ;17

end18

between the average benefits of PVD and CVD. When the
average benefit of CVD is more than that of PVD, system
will call back some space from PVD for the use of CVD,
and vise versa. Algorithm 1 shows the dynamic space al-
location process, in which, size changing rate α should be
defined according to real application.

4.4 View selection within windows

Definition 8.View selection rule M : View selection rule M
is a rule used to select a view to materialize from candidate
views.

M is defined by system itself. Different systems have
their own criteria, such as those based on size of view [4],
benefit of unit space [7], or frequency of unit space [8], etc.

Definition 9.View selection rule N : View selection rule N
is a rule used to select a view from UVW to PVW, according
to which, when two views compete, the one that is accessed
by more users wins; if their numbers of users that access
them are equal, the winner is the one that has larger total
accessed times, namely, the sum of every user’s times of
accessing this view.

Algorithm 2 shows the process of view selecting. It takes
as input CV S, PV S and the available space of every win-
dow, namely SCV D, SPV D and SUV W−u, and outputs the
selected views for every window, namely VCV D, VPV D and
VUV W−u. In Algorithm 2, line 4 to 16 do the job of se-
lecting views from PVS and CVS to UV W−u, which is
denoted by process 1© and 2© in Figure 1. Line 17 to 27
are responsible for selecting views from UV W−u to PVD,

Algorithm 2: View selecting
Input : SCV D , SPV D , SUV W−u, CV S, PV S

Output: VCV D , VP V D , VUV W−u

begin1
VCV D ← φ;VP V D ← φ;2
for each u do VUV W−u ← φ;3
for each u do4

while SUV W−u > 0 do5
VS=PVS ∪ CVS;6
v ←the view in VS satisfying rule M and accessed by u;7
if SUV W−u > |v| then8

VUV W−u ← VUV W−u ∪ {v};9
V S ← V S − {v};10
SUV W−u ← SUV W−u − |v|;11

else12
SUV W−u ← 0;13

end14
end15

end16
while SP V D > 0 do17

v ←the PV in UV W−u satisfying both rule M and N;18
if SP V D > |v| then19

VP V D ← VP V D ∪ {v};20
VUV W−u ← VUV W−u − {v};21
SPV D ← SPV D − |v|;22
SUV W−u ← SUV W−u + |v|;23

else24
SPV D ← 0;25

end26
end27
while SCV D > 0 do28

v ←the CV in UV W−u satisfying both rule M and N;29
if SCV D > |v| then30

VCV D ← VCV D ∪ {v};31
VUV W−u ← VUV W−u − {v};32
SCV D ← SCV D − |v|;33
SUV W−u ← SUV W−u + |v|;34

else35
SCV D ← 0;36

end37
end38
return VCV D , VP V D , VUV W−u;39

end40

which corresponds to process 3© in Figure 1. Line 28 to 38,
corresponding to process 4© in Figure 1, achieve the task of
selecting views from UV W−u to CVD.

Meanwhile, views in every window are to be adjusted
according to the change of user queries. Since view adjust-
ing process in every window is just the same as that in other
methods such as FPUS [7], so we here do not give relating
algorithms.

4.5 Advantages of SOMES

Compared with GVW, UVW−u contains fewer views
and is with smaller size. This results in faster speed in the
view adjusting process of certain view window, since fewer
views are involved. Furthermore, more improvements can
be achieved if we adopt parallel technology to select and
adjust views concurrently for all these windows.

In addition, the phenomena of views’ going into and out
view windows unreasonably are greatly reduced. When ev-
ery user group is allocated with its own UVW−u, the use of

136



views will have obvious feature, which is hard to observe if
all user groups share the same view window, and this will
reduce the unreasonable phenomena described above to a
low level.

5 Empirical Study

In this section, we report the performance evaluation of
our method. The algorithms are implemented with C++.
All the experiments are conducted on 4*2.4GHz CPU (dou-
ble core), 32G memory HP Proliant DL585 Server running
Windows Server 2003 and Oracle 10g.

We design a multidimensional data as shown in Table 4.
Here we assume that the data in DB is evenly distributed.
In the multidimensional data, there are four dimensions,
namely, D0, D1, D2 and D3, and they have 4, 3, 4 and 3
levels respectively. The basic fact table of the multidimen-
sional data DB contains 500KB records, according to which
we can estimate that the size of the cube DB is 15MB.

dimension
level

D0 D1 D2 D3

3 1 - 1 -
2 25 1 5 1
1 50 25 25 10
0 100 50 50 50

Table 4. Dimension member amount of DB

Here we will compare our method with other ones such
as BPUS [5] and FPUS [7]. The values of the parameters in
our method, if not given, is defined as follows: rPG = 0.4,
rUG = 0.6, rCP = 0.6, rPP = 0.4, rUU1 = 0.3, rUU2 =
0.3 and rUU3 = 0.4.

EXPERIMENT 1 : Here we make the size of storage
space 20 percent of that of the cube DB. During the ex-
periment process, there are 10 (simulated) users in each
group continuously starting their own queries. In order
to show the influence of query characteristics, we conduct
the experiments under two much different conditions. Un-
der the first condition, we make all the three user groups
start queries with similar characteristics, as for the second
condition, the characteristics of queries from different user
groups are much different from each other. Let r = t1/t2,
where t1 is the total execution time of SOMES for the first
n queries, and t2 is that of BPUS or FUPS. Figure 2 shows
how r changes with the variation of n. From Figure 2 we
can get that, when under the second condition, SOMES can
achieve more performance improvements over both BPUS
and FPUS than when under the first condition. It means that
SOMES can take fully advantage of query characteristics of
different user groups, whereas this is too hard for BPUS and
FPUS since they do not differentiate between queries from
various users. Also it should be observed in Figure 2 that,

when n < 10, r is larger than 1.0. Take SOMES and BPUS
for example, when under the second condition, for n = 1,
r=1.08, and for n = 1, r=1.01. It means that SOMES costs
more than BPUS when n < 10. The reason is that, at the
initial stages of SOMES, the benefits achieved are cut off
by the costs involved in the space allocation process.

1 5 10 20 40 60 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 

 

r

n

 Under condition 1
 Under condition 2

(a) SOMES / BPUS

1 5 10 20 40 60 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 

 

r

n

 Under condition 1
 Under condition 2

(b) SOMES / FPUS

Figure 2. The change of r when varying n

EXPERIMENT 2 : Figure 3 shows the change of query
cost (see [7] for the cost computing method) for BPUS,
FPUS and SOMES, when varying the ratio of the space of
views to that of DB from 0 to 20%. It shows that available
storage space (view space) plays an important role for all
the three methods. Also, compared with BPUS and FPUS,
SOMES can benefit more from the increase of storage
space. For example, when storage space is 10KB, the query
costs for BPUS, FPUS and SOMES are 300KB, 280KB
and 322KB respectively; when storage space is 100KB, the
query costs for them are 196KB, 140KB and 112KB respec-
tively. Also we conduct experiment to see the effect on the
performance when varying the parameters of our method,
and the result is shown in Table 5.

EXPERIMENT 3 : We also design two simulated sce-
narios to show how SOMES greatly reduces the number
of view exchange times. In the first scenario, we make
three user groups start many queries freely. Figure 4 (a)
shows that SOMES has less view exchange times than both
BPUS and FPUS. In the second scenario, during the 3rd
and 8th minutes, we make these three user groups initiate
queries alternately. As the experimental result in Figure
4 (b) shows, both BPUS and FPUS will ”flip” during the
3rd and 8th minutes, whereas SOMES exhibits a relatively

0 5 10 15 20
0

50

100

150

200

250

300

350

400

450

500

550

 

 

Q
ue

ry
 c

os
t (

K
B

)

Space of views/Space of cube (%)

 BPUS
 FPUS
 SOMES

Figure 3. The change of query cost

137



Query Cost of SOMES / Query Cost of BPUS

rUU1=0.20 rUU1=0.40 rUU1=0.60
rUU2=0.40 rUU2=0.30 rUU2=0.20

rCP =0.25 56.41% 55.02% 57.75%
rPG=0.25 rCP =0.50 54.13% 53.67% 55.53%

rCP =0.75 57.43% 54.61% 58.45%
rCP =0.25 55.37% 53.09% 56.21%

rPG=0.50 rCP =0.50 53.18% 52.22% 54.23%
rCP =0.75 54.63% 53.65% 55.90%
rCP =0.25 56.18% 55.33% 57.06%

rPG=0.75 rCP =0.50 53.99% 53.05% 55.24%
rCP =0.75 57.58% 54.99% 58.13%

Query Cost of SOMES / Query Cost of FPUS

rUU1=0.20 rUU1=0.40 rUU1=0.60
rUU2=0.40 rUU2=0.30 rUU2=0.20

rCP =0.25 56.27% 54.22% 56.98%
rPG=0.25 rCP =0.50 53.87% 53.09% 55.17%

rCP =0.75 57.10% 54.14% 57.78%
rCP =0.25 54.89% 52.35% 55.83%

rPG=0.50 rCP =0.50 52.64% 51.77% 54.02%
rCP =0.75 54.08% 53.26% 55.06%
rCP =0.25 55.45% 55.01% 56.46%

rPG=0.75 rCP =0.50 53.17% 52.79% 54.67%
rCP =0.75 56.42% 54.54% 57.49%

Table 5. Effect on the performance of SOMES
when varying the parameters

smooth curve during the whole process. It means that a lot
of view exchanges occur during the 3rd and 8th minutes for
both BPUS and FPUS, while the number of view exchange
times for SOMES is more stable.

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

20

 

 

th
e 

nu
m

be
r 

of
 v

ie
w

 e
xc

ha
ng

e 
tim

es

time (Minute)

 BPUS
 FPUS
 SOMES

(a) Scenario 1

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

20

 

 

th
e 

nu
m

be
r 

of
 v

ie
w

 e
xa

ng
e 

tim
es

time (Minute)

 BPUS
 FPUS
 SOMES

(b) Scenario 2

Figure 4. The change of the number of view
exchange times in different scenarios

6 Discussion and Conclusion

In this paper, we have revisited materialized view se-
lection problem, and propose a new user-oriented method
called SOMES. It makes full use of query characteristics of
different types of users so that more efficient view selection
can be achieved. Experimental results show that our method
can achieve desirable performance improvements over other
available methods such as BPUS and FPUS.

In future, we will apply our method in the fields such
as mobile communication to meet the real-time query re-
quirements. Also, we will do more research work on how
to better dynamically adjusting the view sets according to
the change of query characteristic.

References

[1] D. Theodoratos and M. Bouzeghoub. A General
Framework for the View Selection Problem for Data
Warehouse Design and Evolution. In: Proc. of the
3rd Intl. Workshop on Data Warehousing and OLAP,
2000, pages:1-9.

[2] H. Gupta, V. Harinarayan, A. Rajaraman. Index Selec-
tion for OLAP. In: ICDE’97, Proceedings of the 13rd
International Conference on Data Engineering. Birm-
ingham, U.K. IEEE Computer Society Press, 1997,
pages: 208-219.

[3] S. R. Valluri, S. Vadapalli, K. Karlapalem. View rele-
vance driven materialized view selection in data ware-
housing environment. Australian Computer Science
Communications, Vol 24(2), Jan, 2002, pages:187-
196.

[4] A. Shukla, P. Deshpande, J.F. Naughton. Material-
ized view selection for multidimensional datasets. In:
VLDB’98, Proceedings of the 24th International Con-
ference on Very Large Data Bases. New York: Morgan
Kaufmann Publishers, Inc., 1998. 488-499.

[5] V. Harinarayan, A. Rajaraman, J.D. Ullman. Imple-
menting data cubes efficiently. In: SIGMOD’96, Pro-
ceedings of the 1996 ACM SIGMOD International
Conference on Management of Data. Montreal: ACM
Press 1996, pages:205-216.

[6] H. Gupta and I. S. Mumick. Selection of Views to
Materialize in a Data Warehouse. IEEE Transactions
on Knowledge and Data Engineering. Vol 17 (1), Jan.
2005. Pages 24-43.

[7] H.X. Tan, L.X. Zhou. Dynamic selection of material-
ized views of multi-dimensional data. Journal of Soft-
ware, China, 2002, Vol.13(06), pages:1090-1096.

[8] U. Hidetoshi, R. Kanda, J.T. Toby. A progressive view
materialization algorithm. In: Proceedings of the sec-
ond ACM international workshop on Data warehous-
ing and OLAP, 1999, pages:36-41.

[9] D. Theodoratos, W. G. Xu. Constructing search spaces
for materialized view selection. In: Proceedings of the
7th ACM international workshop on Data warehous-
ing and OLAP. Nov, 2004, pages: 112-121.

[10] Y.S. Xue, Z.Y. Lin, J.J. Duan, X.H. Lv and
W. Zhang. Dynamic Selection of Materialized Views
of Multi-Dimensional Data with Multi-Users and
Multi-Windows Method. Journal of Computer Re-
search and Development, China, Vol.41, No.10, 2004,
pp:1703-1711.

138


