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ABSTRACT 
The labeling scheme is designed to label the XML nodes so that 
both ordered and un-ordered queries can be processed without 
accessing the original XML file. When XML data become 
dynamic, it is important to design a labeling scheme that can 
facilitate updates and support query processing efficiently. In this 
paper, we propose a novel containment labeling scheme called 
DXCL (Dynamic XML Containment Labeling) to effectively 
process updating in dynamic XML data. Compared with the 
existing dynamic labeling schemes, a distinguishing feature of 
DXCL is that DXCL is compact and efficient regardless of 
whether the documents are updated or not. DXCL uses fixed 
length integer numbers to label initial XML documents and hence 
yields compact label size and high query performance. When 
updates take place, DXCL also has high performance on both 
label updates and query processing especially in the case of 
skewed insertions. Experimental results conform the benefits of 
our approach over the previous dynamic schemes.  

Categories and Subject Descriptors 
H.2.4 [Database Management]: Systems – Query processing 

General Terms 
Algorithms,  Performance. 

Keywords 
Dynamic XML Data, Containment Labeling scheme, Update. 

1. INTRODUCTION 
XML becomes an important standard for data representation and 
exchange on the web and elsewhere. Labeling schemes have been 
wildly adopted to process query over XML data which conform to 
an ordered tree-structured data model. Labeling schemes facilitate 
XML query processing by assigning a unique label to each node 
in the XML tree. In such a way, the structural relationships of the 
nodes such as ancestor/descendant, parent/child can be efficiently 
established.  

Containment labeling scheme [1] is popular in many XML 
database management systems. It provides several advantages 
over prefix labeling scheme [2]. The label size of containment 
scheme is not affected by the structure of the XML documents; 

whereas the sizes of prefix labels increase linearly with the depths 
of XML document, which makes prefix labeling scheme performs 
poorly if XML documents are deep and complex. In addition, 
when querying XML data, the prefix based scheme needs a prefix 
comparison for the determination of the structural relationships, 
which spends more time than ordering operations.  

While containment labeling scheme works well for static 
XML documents, an insertion of a node incurs re-labeling of large 
amounts of nodes, which is costly and becomes a bottleneck. The 
existing approach to design dynamic containment labeling scheme 
is based on the notion of encoding, which includes CDBS [3] and 
QED [4]. The encoding approaches transform the original 
containment labels to some dynamic formats which can avoid re-
labeling when updates take places. However, the encoding 
schemes are no entirely satisfactory. Firstly, transforming labels 
into dynamic formats incurs extra labeling cost and larger label 
size. In addition, since encoding approaches generate the codes 
not sequentially, they all require creating encoding table with size 
O(N) for labeling N nodes. It may fail to process large-scale XML 
documents when limited memory is available.  

The dynamic labeling schemes and traditional static labeling 
scheme both have advantages and disadvantages: the dynamic 
labeling schemes are preferred for XML documents that are 
frequently updated, in which case the performances of static 
labeling schemes degrade significantly as large amounts of nodes 
need relabeling; in contrast, when the XML documents are not or 
rarely updated, the static documents are more efficiently 
supported by the static labeling schemes as applying dynamic 
schemes to documents would result in extra encoding cost and 
querying inefficiency. For getting better performance, we should 
choose between the static schemes and the dynamic schemes to 
label the XML document in accordance with its updating 
frequency. In practice, however, the line between static and 
dynamic XML documents is often blurred since the updating 
frequency of a document varies according to time. Hence making 
a choice between the static schemes and the dynamic schemes is 
not an easy thing and in many cases it may turn out to be contrary 
to one's expectations. It is of great interest to design a labeling 
scheme tailored for both static and dynamic XML documents.  

In this paper, we propose a novel dynamic containment 
labeling scheme called DXCL which doesn’t need transform the 
original labels to dynamic format but can effectively process 
updating in dynamic XML data. DXCL labels initial XML 
document based on integer numbers which are stored with fixed 
bits, and therefore yields cheap label costs as well as compact 
label size and high query performance. Moreover, when XML 
becomes dynamic, DXCL completely avoids relabeling and its 
label quality is resilient to skewed insertions. 

2. RELATED WORK 
Due to space constraint, we only focus on XML labeling and 
encoding techniques related to containment labeling scheme. 
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Containment Labeling Scheme In containment labeling 
scheme [1], every node is assigned three values: start, end and 
level, where start and end denote an interval and level refers to 
the level in the XML document tree. For any two nodes u and v, u 
is an ancestor of v iff  the interval of v is contained in the interval 
of u. Additionally, with using the level of a node, the parent-child 
relationship can be  determined efficiently. Document order can 
also be deduced well by the comparison of start values. However, 
containment labeling scheme can not support updates efficiently. 
An insertion of a node incurs relabeling of all its ancestor nodes 
and all the nodes after this node in document order. 

Encoding Schemes are proposed to avoid the re-labeling 
when XML updating. By applying an encoding scheme to 
containment labeling scheme, the original labels are transformed 
to some dynamic codes which can efficiently process updates. 
QED[4] encoding scheme transforms labels to QED codes. Given 
three integer numbers 1,2, 3 where each number is stored with 2 
bit, i.e. 01, 10 and 11, a QED code is a sequence of these numbers 
which ends with 2 or 3. QED codes are compared based on 
lexicographical order and robust enough to allow insertions 
without re-labeling. For example, “22” can be inserted between 
“2” and “3” whereas “212” can be inserted between “2” and “22”. 
In additional, QED completely avoids the overflow problem as 
the number 0 does not appear in QED code itself and can be 
served as the separator of the different codes. However, the sizes 
of QED codes increase fast for skewed insertions. For example, 
suppose there are many codes that are required to be inserted one 
by one before a QED code “332”, then each insertion requires that 
two more bits should be added for the new inserted code, i.e., the 
new codes will be “3312”, “33112”, “33112” etc. The fast 
increase of code lengths make QED perform poorly. The other 
encoding scheme CDBS [3] is similar to QED except that its 
encoding unit is binary bit. Compared with QED, CDBS is 
compact and its labeling cost is small, but CDBS cannot 
completely solve the re-labeling problem in frequent updates due 
to its overflow problem. 

P-Containment In [3], a variant of the containment labeling 
scheme called P-Containment is proposed. Rather than storing the 
level information, P-Containment scheme stores the start value of 
the parent of the node. With the parent information, the parent-
child relationship can be determined faster and the sibling 
relationship can be determined much faster. Furthermore, when 
dynamic encoding schemes are applied, P-Containment can 
efficiently process the internal node insertions. Prefix labeling 
schemes, however, cannot intrinsically avoid re-labeling when an 
insertion takes place between child and parent nodes. 

3. DXCL  
Our labeling scheme DXCL is based on P-Containment (see 
Sec.2), and solves the update sensitive problem. 

3.1 DXCL code 
We first introduce some correlative conceptions on DXCL code. 

Definition 1 (Quaternary String, QS)  Given a set of integer 
numbers A={1,2,3} where each number is stored with 2 bit, i.e. 
“01”, “10” and “11”. A quaternary string is (q1q2…qt), where t 
is the code size; qt ∈ {2, 3}and qi∈ A, 1 ≤ i ≤ t-1. 

Definition 2 (DXCL Code, DC) DXCL Code is a integer number 
N concatenating a quaternary string, i.e. DC=N ⊕ QS= 
(N.q1q2…qt ), where N is store with fixed bits  and t ≥  0. 

Note that: (1).When t=0, the DXCL code is just a integer  

number and therefore we can apply the integer number to label 
initial XML document;(2).The delimiter “.” in a DXCL code 
(N.q1q2…qt) is not needed to be stored since the integer  number N 
is of  fixed  length; (3). The same as that of QED [4], number 0 
(stored with 2 bits, i.e. “00”) does not appear in the quaternary 
string field because it servers as the separator to identify the 
different DXCL codes. In such a way, DXCL could never 
encounter the overflow problem. 

Example 1 DXCL uses the number 0 (2 bits) to separate different 
codes. For example, “9.2209.230” will be separated to “9.22” and 
“9.23”. Importantly, it avoids the overflow problem in this way. 

DXCL codes are compared by lexicographical order. 

Definition 3 (Lexicographical order p ) Given two DXCL codes 
SL:M.p1p2…ps , and SR:N.q1q2…qt , SL p SR if and only if one of the 
following three conditions holds: 
C1. M<N; 
C2. M=N, s<t and p1=q1, p2=q2,…, ps=qs; 
C3. M=N and ∃ k ≤ min(s, t), such that p1=q1; p2=q2;…; pk-1=qk-1 

and  pk<qk. 

Example 2   We have “9” p  “10” based on condition C1. “9” p  
“9.2” since “9” is a prefix of “9.2”, which satisfies C2. Based on 
C3, “9.233” p  “9.3” because the comparison is from left to right. 

3.2 Initial labeling 
DXCL labels the initial XML tree based on integer numbers 
which are stored with fixed bits. Suppose the total number of the 
nodes in an XML tree is K. Since we should assign start and end 
values to total K nodes, we need to generate 2K consecutive 
integer numbers, and the size to store each integer is log22K bits. 
Fig.1 shows an example of an XML tree labeled by DXCL. Note 
that each integer in Fig.1 is stored with 4 bits. 

 
Fig. 1  DXCL scheme (“a” is an inserted node) 

3.3 Updates processing 
We start by introducing two primitive functions to determine a 
new quaternary string that precedes or follows a given quaternary 
string S in lexicographical order. Suppose a sequence SEQ 
containing all the quaternary strings with size equal to that of S is 
arranged in increasing lexicographical order. We define BEF(S) 
to get the string before S and AFT(S) to get the string after S in 
this sequence. Specially, when S is the first string in SEQ, i.e. 
S=1size(S)-1⊕2 (we use “ik ” to represent the k “i”s in this paper), 
we define BEF(S)= 1size(S)⊕3size(S); when S is the last string in 
SEQ, i.e. S=3size(S), we define AFT(S)= 3size(S)⊕1size(S)-1 ⊕2.   

Example 3   Let 23 be a quaternary string, then SEQ is 12, 13, 22, 
23, 32,33. Based on our definition, we have AFT(23)=32 and BEF 
(23)=22. Likewise, AFT(12)=13, AFT(13)=22,…; and BEF(33)= 
32, BEF(32)=23,….Specially, AFT(33)=3312  and BEF (12)=1133. 

It is verifiable that BEF(S) p S p AFT(S) lexicographically. 
The implements of AFT and BFE are shown in Algorithm 1 and 
Algorithm 2. 

2, 3, 1       

1, 12,-  

5, 6, 4 

4, 9, 1     10,11,1    

7, 8, 4 

b                a          c 
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Algorithm 1   AFT(S)   
1 if S= “3size(S)”  then  return  3size(S)⊕1size(S)-1⊕2;         
2 else if  the last symbol of S is “2”                                 
3       then return S with the last symbol changed to “3”;  
4 else if  the last symbol of S is “3” 
5      denote the position of the lastly encountered “1” or “2”          

in S as p 
6      if  substring(S, p, p)= “1”                                         
7            then return substring(S, 1, p-1)⊕2⊕1 size(S) -p-1⊕“2”;  
8      else          // the case substring(S, p, p)= “2”                                                                 
9              return substring(S, 1, p-1)⊕3⊕1 size(S) -p-1⊕“2”;  
 
Algorithm 2   BEF(S) 
1 if S= “1size(S)-1” ⊕“2”  then  return  1size(S)⊕3size(S);     
2 else if the last symbol of S is “3”                                  
3      then return S with the last symbol changed to  “2” 
4 else if the last symbol of S is “2”  
5      ST ← substring( S, 1, size(S)-1);   
6      denote the position of the lastly encountered “2” or “3” in  

ST as p 
7      if  substring(S, p, p)= “2”                                         
8          then  return  substring(S, 1, p-1)⊕1 ⊕3 size(S) -p 
9     else        // the case substring(S, p, p)= “3”                                                                   
10           return  substring(S, 1, p-1)⊕2⊕3 size(S) -p 

We then propose the algorithm that can always insert a DXCL 
code between two ordered DXCL codes, which guarantees that 
we can update the XML document without re-labeling. 

Algorithm 3   GetInsertedCode(SL, SR) 
Input: DXCL codes SL and   SR 

Output: DXCL code SM, such that SL p SM p  SR 
1 if  size(SL) = size(SR)   then  SM ← SL⊕ “2” 
2 else if  size(SL) < size(SR)  then 
3            ST ← substring(SR, size(SL)+1, size(SR) ) 
4           SM ← SL⊕BEF(ST) 
5 else    ST ←substring(SL, size(SR)+1, size(SL) )  
6          SM ←substring(SL, 1, size(SR) )⊕AFT(ST)  

//we define substring(S, 1, 0)=NIL 
7 end 
8 return  SM 

Theorem 1 Given any two DXCL codes SL and SR which satisfies 
SL p  SR, we can always find a new DXCL code SM based on 
Algorithm 3 such that SL p SM p  SR lexicographically. 

Proof    If size(SL) = size(SR), then SM=SL⊕“2” and SL p SM p SR; 
If size(SL)<size(SR), then SL p=substring(SR, 1, size(SL)) as SL p SR. 
Moreover, let ST=substring(SR, size(SL)+1, size(SR)), then ST is a 
quaternary string and we can get BEF(ST) which is smaller than ST 
lexicographically. Thus SL p SL⊕BEF(ST) p SL⊕ST p =substring  
(SR,1,size (SL)⊕ST =SR. Let SM =SL⊕BEF (ST), then SL p SM p SR;  
If size(SL)>size(SR),  then substring(SL,1,size (SR)) p SR  as SL p SR; 
In additional, let ST=substring (SL, size(SR)+1, size(SL )), then ST is 
a quaternary string and we can get AFT(ST) which is larger than ST 
lexicographically. Thus SL = substring (SL,1, size(SR) )⊕ST p  

substring(SL,1,size(SR))⊕AFT (ST) p  SR ⊕ AFT (S T) p SR. Let 
SM= substring(SL,1,size(SR))⊕AFT(ST), then SL p SM p SR.    □                                                                                  

Example 4   To insert a code between “9” and “10”, since they 
are of same size, we concatenate one more “2” after “9” to get the 
inserted code, which is “9.2”. To insert a code between “9” and 
“9.2”, since the size of “9” is smaller than that of “9.2”, we get  ST 
= “2” (see line 3 in Algorithm 3) and then concatenate BEF(ST) = 
“12” after “9” to get the inserted code, which is “9.12”. Similarly, 
we can get the inserted code “9.3” between “9.2” and “10”. 

The same as that of QED [4], we require the last symbol of 
the quaternary string field in a DXCL code to be “2” or “3”. We 
use an example to show the reason.  

Example 5   Suppose there are two codes “9.1” and “9.11”.  We 
have “9.1” p  “9.11”, but we can not insert anther code SM such 
that “9.1” p  SM p  “9.11”. Hence we require the quaternary 
string field in a DXCL code to be ended with “2” or “3”. 

Based on Algorithm 3 and Theorem 1, DXCL can process 
XML updating without re-labeling the existing labels. 

Example 6 To insert a node “a” in Fig. 1, we should insert 2 
DXCL codes between the end of node b “9” and the start of the 
node c “10”. If we use the original containment scheme, we can 
not insert a code between “9” and “10” and we must re-label the 
existing nodes. Based on our GetInsertedCode algorithm, we 
insert a code “9.2” between “9” and “10”, and then the start value 
of the inserted node “a” is “9.2”. The end value of node “a” is an 
insertion between the code “9.2” and “10”, which is“9.3”. We 
don’t need to re-label any node but can keep the labeling scheme 
working correctly. It is similar for the insertions in other positions. 

DXCL has high resilience to skewed insertions. We use an 
example to analyze the DXCL label size after skewed insertions. 

Example 7   Suppose there are 2000 nodes which are required to 
be inserted repeatedly before the node “c” in Fig.1. Then we 
should generate 4000 DXCL codes one by one between “9” and 
“10”. Based on our algorithm, the first 2 codes are “9.2” and“9.3”, 
which  can be stored with 8 bits(equal to 4+2× 1+2, where the last 
2 is the size of the separator 0);Likewise, the following 2 codes 
are “9.32” and “9.33” stored with size 10; 6 codes “9.3312”, 
“9.3313”, “9.3322”, “9.3323”, “9.3332” and “9.3333” are stored 
with size 14; 54 codes “9.33331112”,…, “9.33333333” are stored 
with size 22; and all the rest codes are stored with size 38. It can 
be seen that the label size of DXCL is little affected by ordered 
insertion sequence. In contrast, the sizes of CDBS and QED codes 
increase at 1 or 2 bits per insertion. 

[5] has proved that the label size of any deterministic labeling 
scheme which does not re-label nodes must increases linearly in 
the worst case. DXCL cannot escape from this claim also. DXCL 
needs to assign labels of size O(n) when n nodes are inserted 
between two consecutive nodes left and right as follows: the first 
node M is inserted between left and right; then the second node is 
inserted between left and M; the insertion of the ith node(3 ≤ i ≤ n) 
takes place between the (i-2)th inserted node and  the (i-1)th 
inserted node. Clearly, this is normally extremely rare in practice. 

4. EXPERIMENT AND RESULTS  
We evaluate DXCL against CDBS and QED using P-Containment 
labels. We don’t compare DXCL against Ordpaths(see SIGMOD 
2004) and DDE(see SIGMOD 2009) as they are prefix-based 
schemes. Table 1 shows the test datasets. 

Table 1. Test datasets 

Dataset Doc.  No. of nodes Max/average depth
D1 Hamlet 6,636 6/4.79 
D2 Allshakes 179,690 7/5.58 
D3 Nasa 476,646 8/3.16 
D4 Lineitem 1,022,976 3/2.94 
D5 Treebank 2,437,666 36/7.87 
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(a)  Memory usage                                               (b) Labeling time                                                  (c) Label size 

Fig. 2 Performance study on initial labeling 

4.1 Initial Labeling 
We test the performances of different schemes labeling on D1-D5. 

Memory Usage We compare the memory usage dominated by 
the size of the encoding table and show the result in Fig.2 (a). We 
observe clear difference of memory usages between difference 
schemes. This result conforms to our previous discussions that 
DXCL need no encoding table whereas both CDBS and QED 
need a tables of size O(N) where N is the nodes number. DXCL 
can process large XML documents with limited memory available. 

Labeling Time Fig.2 (b) shows the different initial labeling 
time of different containment schemes. DXCL spends smallest 
time since it doesn’t need to transform labels into dynamic 
formats as those of CDBS and QED. Additionally, QED needs 
longest encoding time since QED encodes longer strings and has 
time-consuming division operation by “3”.  

Label Sizes As is shown in Fig.2(c), QED has largest average 
label size as QED is stored with quaternary string and “0” cannot 
appear in the QED code itself, which is a waste. Compared with 
CDBS codes which are stored with variable length, DXCL is 
more compact. 

4.2 Frequent Updates 
We discuss the performances of two kinds of frequent updates. 

Uniform Insertions We test the cases that  2n-1(n=1, 2,…,20) 
nodes are uniformly inserted between two consecutive nodes left 
and right where the end value of the node left and the start value 
of the node right both are NIL. The 2n-1 nodes are inserted by n 
times. At the first time, one node M is inserted between left and 
right. At the second time, another 2 new nodes are inserted 
between every two consecutive nodes which lie between left and 
right, i.e., one is inserted between left and M and the other 
between M and right. At the kth time (k=1, 2,…, n), 2k new nodes 
are inserted similarly. We study the average label size of new 
inserted nodes after uniform insertions. As is shown in Fig.3 (a), 
the label size of DXCL shows a little overhead compared with 
that of QED. However, the difference is negligible. Both DXCL 
and QED assign labels to updated nodes using quaternary strings 
and thus their label sizes are approximately the same. Though the 
label size of CDBS is smallest, it cannot avoid re-labeling in 
XML frequent updates. 

Skewed Insertions are common in practice. CDBS easily 
encounter overflow problem in the case of skewed insertions as it 
uses fixed bits to represent its size. Therefore we just compare our 
DXCL against QED. We test the case that n nodes are inserted 
one by one before a particular node of which the start value is 
NIL. Fig.3 (b) shows the different label sizes after skewed 
insertions. The size of DXCL labels only increases slightly 
whereas the size of QED labels has showed a much higher 
increase. This result illustrates the significant advantage of DXCL. 
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(a) Uniform insertions                    (b) Skewed insertions 

            Fig. 3 Performance study on frequent updates 

4.3 Query Performances  
Since all the three schemes compare labels based on 
lexicographical order, the label size is the primary factor in 
determining the query performances. We ignore the diagrams of 
the comparison of query performances here as they show the 
similar trends to that of Fig.2(c), Fig.3 (a) and Fig.3 (b). DXCL 
has high performance on query processing especially in the case 
of skewed insertions. 

5. CONCLUSION 
In this paper, we have presented a novel containment labeling 
scheme DXCL which not only completely avoids re-labeling 
when updating, but also has compact size and high query 
performance. DXCL has controllable size for skewed insertions in 
which case the existing labeling schemes perform poorly. 
Experimental results have demonstrated the benefits of our 
proposed labeling scheme compared to previous approaches. 
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