

Insert-friendly XML Containment Labeling Scheme
Canwei Zhuang

Department of Computer Science
Xiamen University

Xiamen 361005, China

cwzhuang0229@163.com

Ziyu Lin+
Department of Computer Science

Xiamen University
Xiamen 361005, China

ziyulin@xmu.edu.cn

Shaorong Feng
Department of Computer Science

Xiamen University
Xiamen 361005, China

shaorong@xmu.edu.cn

ABSTRACT
The labeling scheme is designed to label the XML nodes so that
both ordered and un-ordered queries can be processed without
accessing the original XML file. When XML data become
dynamic, it is important to design a labeling scheme that can
facilitate updates and support query processing efficiently. In this
paper, we propose a novel containment labeling scheme called
DXCL (Dynamic XML Containment Labeling) to effectively
process updating in dynamic XML data. Compared with the
existing dynamic labeling schemes, a distinguishing feature of
DXCL is that DXCL is compact and efficient regardless of
whether the documents are updated or not. DXCL uses fixed
length integer numbers to label initial XML documents and hence
yields compact label size and high query performance. When
updates take place, DXCL also has high performance on both
label updates and query processing especially in the case of
skewed insertions. Experimental results conform the benefits of
our approach over the previous dynamic schemes.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – Query processing

General Terms
Algorithms, Performance.

Keywords
Dynamic XML Data, Containment Labeling scheme, Update.

1. INTRODUCTION
XML becomes an important standard for data representation and
exchange on the web and elsewhere. Labeling schemes have been
wildly adopted to process query over XML data which conform to
an ordered tree-structured data model. Labeling schemes facilitate
XML query processing by assigning a unique label to each node
in the XML tree. In such a way, the structural relationships of the
nodes such as ancestor/descendant, parent/child can be efficiently
established.

Containment labeling scheme [1] is popular in many XML
database management systems. It provides several advantages
over prefix labeling scheme [2]. The label size of containment
scheme is not affected by the structure of the XML documents;

whereas the sizes of prefix labels increase linearly with the depths
of XML document, which makes prefix labeling scheme performs
poorly if XML documents are deep and complex. In addition,
when querying XML data, the prefix based scheme needs a prefix
comparison for the determination of the structural relationships,
which spends more time than ordering operations.

While containment labeling scheme works well for static
XML documents, an insertion of a node incurs re-labeling of large
amounts of nodes, which is costly and becomes a bottleneck. The
existing approach to design dynamic containment labeling scheme
is based on the notion of encoding, which includes CDBS [3] and
QED [4]. The encoding approaches transform the original
containment labels to some dynamic formats which can avoid re-
labeling when updates take places. However, the encoding
schemes are no entirely satisfactory. Firstly, transforming labels
into dynamic formats incurs extra labeling cost and larger label
size. In addition, since encoding approaches generate the codes
not sequentially, they all require creating encoding table with size
O(N) for labeling N nodes. It may fail to process large-scale XML
documents when limited memory is available.

The dynamic labeling schemes and traditional static labeling
scheme both have advantages and disadvantages: the dynamic
labeling schemes are preferred for XML documents that are
frequently updated, in which case the performances of static
labeling schemes degrade significantly as large amounts of nodes
need relabeling; in contrast, when the XML documents are not or
rarely updated, the static documents are more efficiently
supported by the static labeling schemes as applying dynamic
schemes to documents would result in extra encoding cost and
querying inefficiency. For getting better performance, we should
choose between the static schemes and the dynamic schemes to
label the XML document in accordance with its updating
frequency. In practice, however, the line between static and
dynamic XML documents is often blurred since the updating
frequency of a document varies according to time. Hence making
a choice between the static schemes and the dynamic schemes is
not an easy thing and in many cases it may turn out to be contrary
to one's expectations. It is of great interest to design a labeling
scheme tailored for both static and dynamic XML documents.

In this paper, we propose a novel dynamic containment
labeling scheme called DXCL which doesn’t need transform the
original labels to dynamic format but can effectively process
updating in dynamic XML data. DXCL labels initial XML
document based on integer numbers which are stored with fixed
bits, and therefore yields cheap label costs as well as compact
label size and high query performance. Moreover, when XML
becomes dynamic, DXCL completely avoids relabeling and its
label quality is resilient to skewed insertions.

2. RELATED WORK
Due to space constraint, we only focus on XML labeling and
encoding techniques related to containment labeling scheme.

+ Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10...$10.00.

2449

Containment Labeling Scheme In containment labeling
scheme [1], every node is assigned three values: start, end and
level, where start and end denote an interval and level refers to
the level in the XML document tree. For any two nodes u and v, u
is an ancestor of v iff the interval of v is contained in the interval
of u. Additionally, with using the level of a node, the parent-child
relationship can be determined efficiently. Document order can
also be deduced well by the comparison of start values. However,
containment labeling scheme can not support updates efficiently.
An insertion of a node incurs relabeling of all its ancestor nodes
and all the nodes after this node in document order.

Encoding Schemes are proposed to avoid the re-labeling
when XML updating. By applying an encoding scheme to
containment labeling scheme, the original labels are transformed
to some dynamic codes which can efficiently process updates.
QED[4] encoding scheme transforms labels to QED codes. Given
three integer numbers 1,2, 3 where each number is stored with 2
bit, i.e. 01, 10 and 11, a QED code is a sequence of these numbers
which ends with 2 or 3. QED codes are compared based on
lexicographical order and robust enough to allow insertions
without re-labeling. For example, “22” can be inserted between
“2” and “3” whereas “212” can be inserted between “2” and “22”.
In additional, QED completely avoids the overflow problem as
the number 0 does not appear in QED code itself and can be
served as the separator of the different codes. However, the sizes
of QED codes increase fast for skewed insertions. For example,
suppose there are many codes that are required to be inserted one
by one before a QED code “332”, then each insertion requires that
two more bits should be added for the new inserted code, i.e., the
new codes will be “3312”, “33112”, “33112” etc. The fast
increase of code lengths make QED perform poorly. The other
encoding scheme CDBS [3] is similar to QED except that its
encoding unit is binary bit. Compared with QED, CDBS is
compact and its labeling cost is small, but CDBS cannot
completely solve the re-labeling problem in frequent updates due
to its overflow problem.

P-Containment In [3], a variant of the containment labeling
scheme called P-Containment is proposed. Rather than storing the
level information, P-Containment scheme stores the start value of
the parent of the node. With the parent information, the parent-
child relationship can be determined faster and the sibling
relationship can be determined much faster. Furthermore, when
dynamic encoding schemes are applied, P-Containment can
efficiently process the internal node insertions. Prefix labeling
schemes, however, cannot intrinsically avoid re-labeling when an
insertion takes place between child and parent nodes.

3. DXCL
Our labeling scheme DXCL is based on P-Containment (see
Sec.2), and solves the update sensitive problem.

3.1 DXCL code
We first introduce some correlative conceptions on DXCL code.

Definition 1 (Quaternary String, QS) Given a set of integer
numbers A={1,2,3} where each number is stored with 2 bit, i.e.
“01”, “10” and “11”. A quaternary string is (q1q2…qt), where t
is the code size; qt ∈ {2, 3}and qi∈ A, 1 ≤ i ≤ t-1.

Definition 2 (DXCL Code, DC) DXCL Code is a integer number
N concatenating a quaternary string, i.e. DC=N ⊕ QS=
(N.q1q2…qt), where N is store with fixed bits and t ≥ 0.

Note that: (1).When t=0, the DXCL code is just a integer

number and therefore we can apply the integer number to label
initial XML document;(2).The delimiter “.” in a DXCL code
(N.q1q2…qt) is not needed to be stored since the integer number N
is of fixed length; (3). The same as that of QED [4], number 0
(stored with 2 bits, i.e. “00”) does not appear in the quaternary
string field because it servers as the separator to identify the
different DXCL codes. In such a way, DXCL could never
encounter the overflow problem.

Example 1 DXCL uses the number 0 (2 bits) to separate different
codes. For example, “9.2209.230” will be separated to “9.22” and
“9.23”. Importantly, it avoids the overflow problem in this way.

DXCL codes are compared by lexicographical order.

Definition 3 (Lexicographical order p) Given two DXCL codes
SL:M.p1p2…ps , and SR:N.q1q2…qt , SL p SR if and only if one of the
following three conditions holds:
C1. M<N;
C2. M=N, s<t and p1=q1, p2=q2,…, ps=qs;
C3. M=N and ∃ k ≤ min(s, t), such that p1=q1; p2=q2;…; pk-1=qk-1

and pk<qk.

Example 2 We have “9” p “10” based on condition C1. “9” p
“9.2” since “9” is a prefix of “9.2”, which satisfies C2. Based on
C3, “9.233” p “9.3” because the comparison is from left to right.

3.2 Initial labeling
DXCL labels the initial XML tree based on integer numbers
which are stored with fixed bits. Suppose the total number of the
nodes in an XML tree is K. Since we should assign start and end
values to total K nodes, we need to generate 2K consecutive
integer numbers, and the size to store each integer is log22K bits.
Fig.1 shows an example of an XML tree labeled by DXCL. Note
that each integer in Fig.1 is stored with 4 bits.

Fig. 1 DXCL scheme (“a” is an inserted node)

3.3 Updates processing
We start by introducing two primitive functions to determine a
new quaternary string that precedes or follows a given quaternary
string S in lexicographical order. Suppose a sequence SEQ
containing all the quaternary strings with size equal to that of S is
arranged in increasing lexicographical order. We define BEF(S)
to get the string before S and AFT(S) to get the string after S in
this sequence. Specially, when S is the first string in SEQ, i.e.
S=1size(S)-1⊕2 (we use “ik ” to represent the k “i”s in this paper),
we define BEF(S)= 1size(S)⊕3size(S); when S is the last string in
SEQ, i.e. S=3size(S), we define AFT(S)= 3size(S)⊕1size(S)-1 ⊕2.

Example 3 Let 23 be a quaternary string, then SEQ is 12, 13, 22,
23, 32,33. Based on our definition, we have AFT(23)=32 and BEF
(23)=22. Likewise, AFT(12)=13, AFT(13)=22,…; and BEF(33)=
32, BEF(32)=23,….Specially, AFT(33)=3312 and BEF (12)=1133.

It is verifiable that BEF(S) p S p AFT(S) lexicographically.
The implements of AFT and BFE are shown in Algorithm 1 and
Algorithm 2.

2, 3, 1

1, 12,-

5, 6, 4

4, 9, 1 10,11,1

7, 8, 4

b a c

2450

Algorithm 1 AFT(S)
1 if S= “3size(S)” then return 3size(S)⊕1size(S)-1⊕2;
2 else if the last symbol of S is “2”
3 then return S with the last symbol changed to “3”;
4 else if the last symbol of S is “3”
5 denote the position of the lastly encountered “1” or “2”

in S as p
6 if substring(S, p, p)= “1”
7 then return substring(S, 1, p-1)⊕2⊕1 size(S) -p-1⊕“2”;
8 else // the case substring(S, p, p)= “2”
9 return substring(S, 1, p-1)⊕3⊕1 size(S) -p-1⊕“2”;

Algorithm 2 BEF(S)
1 if S= “1size(S)-1” ⊕“2” then return 1size(S)⊕3size(S);
2 else if the last symbol of S is “3”
3 then return S with the last symbol changed to “2”
4 else if the last symbol of S is “2”
5 ST ← substring(S, 1, size(S)-1);
6 denote the position of the lastly encountered “2” or “3” in

ST as p
7 if substring(S, p, p)= “2”
8 then return substring(S, 1, p-1)⊕1 ⊕3 size(S) -p
9 else // the case substring(S, p, p)= “3”
10 return substring(S, 1, p-1)⊕2⊕3 size(S) -p

We then propose the algorithm that can always insert a DXCL
code between two ordered DXCL codes, which guarantees that
we can update the XML document without re-labeling.

Algorithm 3 GetInsertedCode(SL, SR)
Input: DXCL codes SL and SR

Output: DXCL code SM, such that SL p SM p SR
1 if size(SL) = size(SR) then SM ← SL⊕ “2”
2 else if size(SL) < size(SR) then
3 ST ← substring(SR, size(SL)+1, size(SR))
4 SM ← SL⊕BEF(ST)
5 else ST ←substring(SL, size(SR)+1, size(SL))
6 SM ←substring(SL, 1, size(SR))⊕AFT(ST)

//we define substring(S, 1, 0)=NIL
7 end
8 return SM

Theorem 1 Given any two DXCL codes SL and SR which satisfies
SL p SR, we can always find a new DXCL code SM based on
Algorithm 3 such that SL p SM p SR lexicographically.

Proof If size(SL) = size(SR), then SM=SL⊕“2” and SL p SM p SR;
If size(SL)<size(SR), then SL p=substring(SR, 1, size(SL)) as SL p SR.
Moreover, let ST=substring(SR, size(SL)+1, size(SR)), then ST is a
quaternary string and we can get BEF(ST) which is smaller than ST
lexicographically. Thus SL p SL⊕BEF(ST) p SL⊕ST p =substring
(SR,1,size (SL)⊕ST =SR. Let SM =SL⊕BEF (ST), then SL p SM p SR;
If size(SL)>size(SR), then substring(SL,1,size (SR)) p SR as SL p SR;
In additional, let ST=substring (SL, size(SR)+1, size(SL)), then ST is
a quaternary string and we can get AFT(ST) which is larger than ST
lexicographically. Thus SL = substring (SL,1, size(SR))⊕ST p

substring(SL,1,size(SR))⊕AFT (ST) p SR ⊕ AFT (S T) p SR. Let
SM= substring(SL,1,size(SR))⊕AFT(ST), then SL p SM p SR. □

Example 4 To insert a code between “9” and “10”, since they
are of same size, we concatenate one more “2” after “9” to get the
inserted code, which is “9.2”. To insert a code between “9” and
“9.2”, since the size of “9” is smaller than that of “9.2”, we get ST
= “2” (see line 3 in Algorithm 3) and then concatenate BEF(ST) =
“12” after “9” to get the inserted code, which is “9.12”. Similarly,
we can get the inserted code “9.3” between “9.2” and “10”.

The same as that of QED [4], we require the last symbol of
the quaternary string field in a DXCL code to be “2” or “3”. We
use an example to show the reason.

Example 5 Suppose there are two codes “9.1” and “9.11”. We
have “9.1” p “9.11”, but we can not insert anther code SM such
that “9.1” p SM p “9.11”. Hence we require the quaternary
string field in a DXCL code to be ended with “2” or “3”.

Based on Algorithm 3 and Theorem 1, DXCL can process
XML updating without re-labeling the existing labels.

Example 6 To insert a node “a” in Fig. 1, we should insert 2
DXCL codes between the end of node b “9” and the start of the
node c “10”. If we use the original containment scheme, we can
not insert a code between “9” and “10” and we must re-label the
existing nodes. Based on our GetInsertedCode algorithm, we
insert a code “9.2” between “9” and “10”, and then the start value
of the inserted node “a” is “9.2”. The end value of node “a” is an
insertion between the code “9.2” and “10”, which is“9.3”. We
don’t need to re-label any node but can keep the labeling scheme
working correctly. It is similar for the insertions in other positions.

DXCL has high resilience to skewed insertions. We use an
example to analyze the DXCL label size after skewed insertions.

Example 7 Suppose there are 2000 nodes which are required to
be inserted repeatedly before the node “c” in Fig.1. Then we
should generate 4000 DXCL codes one by one between “9” and
“10”. Based on our algorithm, the first 2 codes are “9.2” and“9.3”,
which can be stored with 8 bits(equal to 4+2× 1+2, where the last
2 is the size of the separator 0);Likewise, the following 2 codes
are “9.32” and “9.33” stored with size 10; 6 codes “9.3312”,
“9.3313”, “9.3322”, “9.3323”, “9.3332” and “9.3333” are stored
with size 14; 54 codes “9.33331112”,…, “9.33333333” are stored
with size 22; and all the rest codes are stored with size 38. It can
be seen that the label size of DXCL is little affected by ordered
insertion sequence. In contrast, the sizes of CDBS and QED codes
increase at 1 or 2 bits per insertion.

[5] has proved that the label size of any deterministic labeling
scheme which does not re-label nodes must increases linearly in
the worst case. DXCL cannot escape from this claim also. DXCL
needs to assign labels of size O(n) when n nodes are inserted
between two consecutive nodes left and right as follows: the first
node M is inserted between left and right; then the second node is
inserted between left and M; the insertion of the ith node(3 ≤ i ≤ n)
takes place between the (i-2)th inserted node and the (i-1)th
inserted node. Clearly, this is normally extremely rare in practice.

4. EXPERIMENT AND RESULTS
We evaluate DXCL against CDBS and QED using P-Containment
labels. We don’t compare DXCL against Ordpaths(see SIGMOD
2004) and DDE(see SIGMOD 2009) as they are prefix-based
schemes. Table 1 shows the test datasets.

Table 1. Test datasets

Dataset Doc. No. of nodes Max/average depth
D1 Hamlet 6,636 6/4.79
D2 Allshakes 179,690 7/5.58
D3 Nasa 476,646 8/3.16
D4 Lineitem 1,022,976 3/2.94
D5 Treebank 2,437,666 36/7.87

2451

D1 D2 D3 D4 D5
0

1000

2000

3000

4000

5000
Ta

be
l s

iz
e(

K
)

Datasets

 CDBS
 QED
 DXCL

D1 D2 D3 D4 D5

0

10

20

30

40

La
be

lin
g

tim
e(

s)

Datasets

 CDBS
 QED
 DXCL

D1 D2 D3 D4 D5

0

20

40

60

80

100

120

La
be

l s
iz

e(
bi

ts
)

Datasets

 CDBS QED DXCL

(a) Memory usage (b) Labeling time (c) Label size

Fig. 2 Performance study on initial labeling

4.1 Initial Labeling
We test the performances of different schemes labeling on D1-D5.

Memory Usage We compare the memory usage dominated by
the size of the encoding table and show the result in Fig.2 (a). We
observe clear difference of memory usages between difference
schemes. This result conforms to our previous discussions that
DXCL need no encoding table whereas both CDBS and QED
need a tables of size O(N) where N is the nodes number. DXCL
can process large XML documents with limited memory available.

Labeling Time Fig.2 (b) shows the different initial labeling
time of different containment schemes. DXCL spends smallest
time since it doesn’t need to transform labels into dynamic
formats as those of CDBS and QED. Additionally, QED needs
longest encoding time since QED encodes longer strings and has
time-consuming division operation by “3”.

Label Sizes As is shown in Fig.2(c), QED has largest average
label size as QED is stored with quaternary string and “0” cannot
appear in the QED code itself, which is a waste. Compared with
CDBS codes which are stored with variable length, DXCL is
more compact.

4.2 Frequent Updates
We discuss the performances of two kinds of frequent updates.

Uniform Insertions We test the cases that 2n-1(n=1, 2,…,20)
nodes are uniformly inserted between two consecutive nodes left
and right where the end value of the node left and the start value
of the node right both are NIL. The 2n-1 nodes are inserted by n
times. At the first time, one node M is inserted between left and
right. At the second time, another 2 new nodes are inserted
between every two consecutive nodes which lie between left and
right, i.e., one is inserted between left and M and the other
between M and right. At the kth time (k=1, 2,…, n), 2k new nodes
are inserted similarly. We study the average label size of new
inserted nodes after uniform insertions. As is shown in Fig.3 (a),
the label size of DXCL shows a little overhead compared with
that of QED. However, the difference is negligible. Both DXCL
and QED assign labels to updated nodes using quaternary strings
and thus their label sizes are approximately the same. Though the
label size of CDBS is smallest, it cannot avoid re-labeling in
XML frequent updates.

Skewed Insertions are common in practice. CDBS easily
encounter overflow problem in the case of skewed insertions as it
uses fixed bits to represent its size. Therefore we just compare our
DXCL against QED. We test the case that n nodes are inserted
one by one before a particular node of which the start value is
NIL. Fig.3 (b) shows the different label sizes after skewed
insertions. The size of DXCL labels only increases slightly
whereas the size of QED labels has showed a much higher
increase. This result illustrates the significant advantage of DXCL.

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

La
be

l S
iz

e(
bi

ts
)

LOG2(1+Number of nodes inserted)

 CDBS
 QED
 DXCL

0 500 1000 1500 2000

0

1k

2k

3k

4k QED
 DXCL

Number of nodes inserted

La
be

l S
iz

e(
bi

ts
)

(a) Uniform insertions (b) Skewed insertions

 Fig. 3 Performance study on frequent updates

4.3 Query Performances
Since all the three schemes compare labels based on
lexicographical order, the label size is the primary factor in
determining the query performances. We ignore the diagrams of
the comparison of query performances here as they show the
similar trends to that of Fig.2(c), Fig.3 (a) and Fig.3 (b). DXCL
has high performance on query processing especially in the case
of skewed insertions.

5. CONCLUSION
In this paper, we have presented a novel containment labeling
scheme DXCL which not only completely avoids re-labeling
when updating, but also has compact size and high query
performance. DXCL has controllable size for skewed insertions in
which case the existing labeling schemes perform poorly.
Experimental results have demonstrated the benefits of our
proposed labeling scheme compared to previous approaches.

6. ACKOWLEDGEMENT
This research was supported by the Fundamental Research Funds
for the Central Universities under Grant No. 2011121049.

REFERENCES
[1] C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and G. M.

Lohman. On supporting containment queries in relational
database management systems. In SIGMOD, 2001.

[2] I. Tatarinov, S. Viglas, K. S. Beyer, J. Shanmugasundaram,
E. J. Shekita, and C. Zhang. Storing and querying ordered
XML using a relational database system. In SIGMOD, 2002.

[3] C. Li, T. W. Ling, and M. Hu. Efficient updates in dynamic
XML data: from binary string to quaternary string. VLDB J,
2008.

[4] C. Li and T. W. Ling. QED: a novel quaternary encoding to
completely avoid relabeling in XML updates. In CIKM,2005.

[5] E. Cohen, H. Kaplan, and T. Milo. Labeling Dynamic XML
Trees. In PODS, 2002.

2452

