
PACOKS: Progressive
Ant-Colony-Optimization-Based Keyword

Search over Relational Databases

Ziyu Lin1(B), Qian Xue1, and Yongxuan Lai2

1 Department of Computer Science, Xiamen University, Xiamen, China
{ziyulin,xueqian2015}@xmu.edu.cn

2 School of Software, Xiamen University, Xiamen, China
laiyx@xmu.edu.cn

Abstract. Keyword search over relational databases makes it easier to
retrieve information from structural data. One solution is to first repre-
sent the relational data as a graph, and then find the minimum Steiner
tree containing all the keywords by traversing the graph. However, the
existing work involves substantial costs even for those based on heuristic
algorithms, as the minimum Steiner tree problem is proved to be an NP-
hard problem. In order to reduce the response time for a single search to
a low level, a progressive ant-colony-optimization-based algorithm, called
PACOKS, is proposed here, which achieves the best answer in a step-
by-step manner, through the cooperation of large amounts of searches
over time, instead of in an one-step manner by a single search. Through
this way, the high costs for finding the best answer, are shared among
large amounts of searches, so that low cost and fast response time for
a single search is achieved. Extensive experimental results based on our
prototype show that our method can achieve better performance than
those state-of-the-art methods.

1 Introduction

Keyword search over relational databases and XML documents makes it an
easier task to retrieve information from structural and semi-structural data, as
users, especially casual users, do not need to learn query languages such as
SQL or to know anything about data schemas. Keyword search over these data
has been recently thoroughly studied (e.g., [2,3,8,13,16]), and the work can be
typically classified into two categories, namely data graph based (e.g., BANKS
[2] and EASE [9]) and schema graph based (e.g., DISCOVER [6] and DBXplorer
[1]). Schema-graph-based approach enumerates results by directly running SQL
statements against DBMS, which means that such approach can only be used in
relational data, while the data-graph-based approach is to find out the minimum

Supported by the Natural Science Foundation of China (61303004), the National
Key Technology Support Program (2015BAH16F00/F01) and the Key Technology
Program of Xiamen City (3502Z20151016).

c© Springer International Publishing Switzerland 2016
B. Cui et al. (Eds.): WAIM 2016, Part II, LNCS 9659, pp. 107–119, 2016.
DOI: 10.1007/978-3-319-39958-4 9



108 Z. Lin et al.

Steiner tree by traversing through a data graph, which makes it appropriate for
all the data that can be represented as graph.

However, the existing work encountered a challenging issue, i.e., high cost for
a single search. As the minimum Steiner tree problem is proved to be an NP-
hard problem, the previous data-graph-based solutions, most based on heuristics,
usually involve substantial cost for a single search. It is also the case for those
schema-graph-based solutions, since there are large amounts of possible expres-
sions to run over the DBMS.

To address the above problem, we first propose an ant-colony-optimization-
based algorithm, called ACOKS, to find the minimum Steiner tree from the data
graph. Furthermore, we propose a novel progressive ant-colony-optimization-
based algorithm, called PACOKS, an abbreviation for Progressive Ant Colony
Optimization based Keyword Search, which achieves the best answer in a step-
by-step manner through the cooperation of large amounts of searches over time,
instead of in an one-step manner by a single search. In other words, the later
search result is further optimized based on the earlier one, and the global optimal
solution, i.e., the minimum Steiner tree, is gradually achieved through many
searches. This way, the high costs for finding the best answer are shared among
large amounts of searches, so that low cost and fast response time for a single
search is achieved.

To sum up, the main contributions of this paper include:

– An ant-colony-optimization-based algorithm for approximating the minimum
or top-k Steiner trees problem.

– A progressive ant-colony-optimization-based algorithm to share the high cost
of Steiner tree problem among large amounts of searches so as to achieve very
low cost for a single search.

– A prototype to carry out extensive experiments, which confirm the superior
performance of our approach over the state-of-the-art methods.

The remainder of this paper is organized as follows. We formalize the mini-
mum Steiner tree problem in Sect. 2. Section 3 discusses the ACOKS algorithm.
We discuss in detail the PACOKS algorithm in Sect. 4. Experimental studies are
given in Sect. 5, followed by discussions over related work in Sect. 6. Finally, we
conclude in Sect. 7.

2 Data-Graph-Based Approach

2.1 Data Graph

The principal of data-graph-based solutions to keyword search over relational
databases, is to enumerate the minimum cost Steiner trees by traversing through
the data graph constructed from a relational database.

A relational database D can be considered as a directed graph G(V,E), called
data graph, where V represents the set of nodes, and E the set of edges. A node
u ∈ V represents a tuple in D. A tuple may be inserted into or deleted from a



PACOKS: Progressive Ant-Colony-Optimization-Based Keyword Search 109

relation in D, resulting in the change of the data graph. Given two nodes u ∈ V
and v ∈ V , there exists a forward edge e(u, v) in the data graph, from u to
v, denoted u → v, and a backward edge e(v, u), from v to u, denoted v → u,
if there is primary-foreign-key relationship between u and v, where the foreign
key is defined on u referencing to the primary key defined on v. Both edges
and nodes may have weights, which are identified by the functions of w(e) and
w(u) respectively. The weight of a data graph, denoted w(G), is the sum of the
weights of all edges, i.e., w(G) =

∑
e∈E w(e). Keyword search algorithms score

the candidate Steiner trees based on node weights and edge weights, and then
rank these trees in the order of decreasing score. Since the focus of this paper
is not how to define the weight function, we simply take the weight function
proposed in BANKS [2]. In other words, the weight of a node u, denoted w(u),
is a function of in-degree. The weight of an edge e(u, v) depends on the its type,
i.e., w(u, v)=1 for a forward edge representing a primary-foreign-key relationship,
and w(v, u) = w(u, v) ∗ log2(1 + Din(v)) for a backward edge, where Din(v)
represents the in-degree of a node v.

Example 1. Figure 1 shows a simple example on the publication database
DBLP. It consists of four relation schemas (see Fig. 1(a)), i.e., Authors, Papers,
Cites and Writes. Authors has two attributes, AID and Name, and the primary
key is defined on AID. Papers has two attributes (PID and Title) with PID
as the primary key. Cites has two foreign keys, Citing and Cited, both referring
to the primary key defined on Papers. Writes has two foreign keys, AID (refer to
the primary key defined on Authors) and PID (refer to the primary key defined
on Papers). Figure 1(b) and (c) show the database conforming to the relation
schemas above and its corresponding data graph respectively. ��

2.2 Steiner Tree Problem

In a relational database, the task of keyword search is to find those Steiner
trees containing the keywords. These nodes containing the keywords are inter-
connected by sequences of primary/foreign key relationships among tuples.

Example 2. Figure 1(d) shows two Steiner trees. The left one may be one
of the answers for the 4-keyword search {database(k1),XML(k2), Jim(k3),
Steiner(k4)}, and the right one for the 3-keyword search {Jim(k5), Steiner(k6),
Kate(k7)}, over the publication database in Fig. 1(b). ��

The best answer for a keyword search is a minimal Steiner tree.

Definition 1. [Minimum Steiner tree] Given a data graph G(V,E) and a node
set V ′ ⊆ V , a tree T is called a Steiner tree over V ′, if T contains all the nodes
in V ′. Let c(T ) =

∑
e∈E w(e) be the cost of T , where w(e) is the weight of an

edge e. We say that T is the minimum Steiner tree, if c(T ) is the minimum
among all the Steiner trees over V ′ in G. ��

An extension of minimum Steiner tree is minimum group Steiner tree. Key-
word search over a data graph can also be seen as a minimum group Steiner tree
problem.



110 Z. Lin et al.

Fig. 1. A simple publication database.

Definition 2. [Minimum group Steiner tree] Given a data graph G(V,E) and
groups V1, V2, ..., Vn ⊆ V , we say that T is the minimum group Steiner tree over
V1, V2, ..., Vn in G, if T is a minimum Steiner tree and contains at least one node
from each group Vi(1 ≤ i ≤ n). ��

3 The ACOKS Algorithm

Large amounts of experiments in recent years proved that, ant colony optimiza-
tion (or ACO in abbreviation) is able to achieve high efficiency in dealing with
various kinds of NP-hard problem. Therefore we here propose an ant-colony-
optimization-based algorithm, called ACOKS, an abbreviation of ACO-based
Keyword Search, to deal with the Steiner tree problem. The basic idea of ACOKS
is to find Steiner trees containing the keywords in the data graph through the



PACOKS: Progressive Ant-Colony-Optimization-Based Keyword Search 111

cooperation of many ants. When searching for the optimal solution, it aims to
find the minimum Steiner tree, while for the top-k answers, it outputs the top-k
Steiner trees with minimum costs. As far as the solution for the Steiner tree
problem is concerned, it usually uses the method of spanning and cleanup. In
this method, it starts from any node of a group Vi and spans to its neighboring
nodes, until covering at least one node from each group. Finally, those redundant
nodes are deleted from the result tree. The main algorithm of ACOKS is out-
lined in Algorithm 1. The function of ONE−ANT−MOV(ant) in Algorithm 1
is given in Algorithm 2. The transition rule and pheromone updating for ant
colony optimization can be found in many other related research work, so they
are not discussed here.

Algorithm 1. ACOKS
Input : keyword search K = {k1, k2, ..., km};

data graph G;
Output: top-k Steiner trees;

begin
foreach ki ∈ K do

get the content set Ci of ki;

iteration−time←0;
initialize the pheromone matrix M ;
result−heap ← Φ;
t ← 0;
while iteration−time < max−iterlation−time do

select one node from each Ci and put p ants on it to form ant set Sants;
ant−num← m ∗ p;
foreach ant ∈ Sants do

step−num ← 0;
Svisited(ant) ← Φ;
Sspanned(ant) ← {ki};

while ant−num > 0 do
foreach ant ∈ Sants do

ONE−ANT−MOV(ant)

iteration−time ← iteration−time + 1;

output the result trees in result−heap;

4 The PACOKS Algorithm

4.1 The Defect of ACOKS

The ACO algorithm has characteristics that do not exist for ants in the nat-
ural world. For example, the results can be optimized little by little with the
accumulation of pheromone on the paths. By optimization, it means that the



112 Z. Lin et al.

Algorithm 2. ONE−ANT−MOV(ant)

begin
if ant.step−num > max−step−num then

destroy ant;
else

ant.step−num ← ant.step−num + 1;
t ← t + 1;
move to next node v satisfying that v /∈ Svisited(ant);
if there is no other ant arriving at v at time t then

Svisited(ant) ← Svisited(ant) ∪ v
else

Svisited(ant) ← Svisited(ant−other) ∪ Svisited(ant);
Sspanned(ant) ← Sspanned(ant−other) ∪ Sspanned(ant);
destroy ant−other;
if Sspanned(ant) = K then

output the Steiner tree s−tree composed of nodes in
Svisited(ant);
remove redundant nodes from s−tree;
if score(s−tree) > score(s−tree−min) then

remove s−tree−min from result−heap;
put s−tree into result−heap;

else
discard s−tree;

destroy ant;

update the pheromone matrix M at time t;

later solution is closer to the global optimal solution (or GOS in abbreviation),
compared with the previous one. In other words, for ACOKS, the solution of
each iteration is a successive approximation to the GOS. Also the ACO algo-
rithm usually can achieve good convergence in most real applications, though
the theoretical proof of its convergence is still not available for some cases.
Gutjahr et al. [4] discussed the convergence of a graph-based ACO, and proved
that the GOS can always be found if the amount of ants is large enough. Yang
et al. [15] proved that the ACO algorithm for the Steiner tree problem is able
to converge to the GOS, with the probability of 1-ε, when the the number of
iterations is large enough, where ε is an arbitrarily small value. Therefore, for
the above ACOKS algorithm, we can get a conclusion as follows:

– it can not be assured to find the GOS if the number of ants is limited; and
– there must be enough ants if the GOS is to be achieved.

However, the contradiction is that it will take too long and be unacceptable
for user, if it involves a large amount of ants for a single user search, though
the GOS can be finally achieved through this way. On the other hand, if we
want to limit the response time for a single search to a low level, the number of



PACOKS: Progressive Ant-Colony-Optimization-Based Keyword Search 113

ants must be limited to a small amount. However, this may influence the result
quality and lead to low search effectiveness.

4.2 The PACOKS Algorithm

To resolve the issue above, we here propose the progressive-ACO-based algo-
rithm, or PACOKS in abbreviation, which aims to achieve the GOS through
a step-by-step approach rather than a one-step approach. In other words, the
result of the current search is a further optimization upon that of the previous
one, so that the result of every search is a successive approximation of the GOS.
In this way, the expensive costs of finding the GOS are shared among a large
amounts of searches, and the cost for a single search is reduced to a very low
level, resulting in fast response times for it.

Now we consider how to find the best answer for a search by PACOKS, which
can be easily extended to support top-k search.

Algorithm 3. PACOKS
Input : keyword search K = {k1, k2, ..., km}
Output: the best answer result−tree

begin
construct complete graph GK with ki(∈ K) as vertex;
foreach e(ki, kj)∈ Gk do

s−tree(ki, kj) ←ACOKS(ki, kj);
weight(ki, kj) ←COST(s−tree(ki, kj));

min−tree ←MINTREE(GK);
foreach e(ki, kj)∈ min−tree do

min−tree ← REPLACE(min−tree, e(ki, kj), s−tree(ki, kj));

result−tree ←min−tree;

Algorithm 3 shows the main steps of PACOKS, in which the functions are
as follows:

– COST(s−tree): compute the cost(or weight) of the Steiner tree s−tree;
– ACOKS(ki, kj): the ant-colony-optimization based algorithm, as is shown in

Algorithm 1, for keyword pair{ki, kj};
– MINTREE(GK): compute the minimum spanning tree of GK ;
– REPLACE(min−tree, e(ki, kj), s−tree(ki, kj)): replace the edge e(ki, kj)

in min−tree with s−tree(ki, kj).

Since the three algorithms, COST, MINTREE, and REPLACE, are so sim-
ple, they are not given in detail here.

Example 3. Figure 2 is an example explaining the process of PACOKS, which
includes the following steps:

– Step 1: Given a keyword search K, including four keywords k1, k2, k3 and k4.
Construct a complete graph GK , with k1, k2, k3 and k4 as vertexes;



114 Z. Lin et al.

– Step 2: Call the algorithm ACOKS(k1, k2) for the edge e(k1, k2), so as to
get the minimum Steiner tree s−tree(k1, k2) containing the keywords k1
and k2; Similarly, we can get s−tree(k1, k3), s−tree(k1, k4), s−tree(k2, k3),
s−tree(k2, k4) and s−tree(k3, k4);

– Step 3: Compute the cost of s−tree(k1, k2), denoted g1, as the weight of the
edge e(k1, k2) in GK . Similarly, we can get g2, g3, g4, g5 and g6 as the weights
of the other edges in GK ;

– Step 4: Compute the minimum spanning tree min−tree from GK , which
includes three edges, say, e(k1, k2), e(k1, k4) and e(k3, k4);

– Step 5: For each edge e(ki, kj) in min−tree, replace e(ki, kj) with
s−tree(ki, kj). Therefore, e(k1, k2), e(k1, k4) and e(k3, k4) are replaced with
s−tree(k1, k2), s−tree(k1, k4) and s−tree(k3, k4) respectively. Figure 2(b)
shows s−tree(k1, k2), s−tree(k1, k4) and s−tree(k3, k4), where u(ki) repre-
sents a node containing the keyword ki. There exist common nodes, i.e., u1

and u(k1), between s−tree(k1, k2) and s−tree(k1, k4), and u3,u(k4) between
s−tree(k1, k4) and s−tree(k3, k4). Therefore the three Steiner trees can be
combined into one result tree based on their common nodes. ��

Fig. 2. The execution process of PACOKS.

Note: as Fig. 2 shows, in PACOKS, it only contains two keywords, ki and
kj , whenever it calls the algorithm ACOKS. If a search K contains more than
two keywords, it will call the algorithm ACOKS for each pair of keywords in K.
Fortunately, a user will not start a search containing too many keywords.

5 Experimental Study

Here we report the performance evaluation of our method. The algorithms
are implemented in JAVA. All the experiments were conducted on Intel i7-
2600 3.40 GHz CPU, 16.0 GB memory DELL OptiPlex990 PC running Win-
dows Server 2003 and Oracle 11g. As with most other work, we downloaded the



PACOKS: Progressive Ant-Colony-Optimization-Based Keyword Search 115

DBLP data (http://dblp.uni-trier.de/xml/) as the testing datasets. The DBLP
database involves about 800MB data in the form of XML documents, which
are uploaded to the Oracle database through a simple program developed by
us. In this way, relational database called DBLP in Oracle database can be
populated. Then we write a program to generate data graphs from the rela-
tional database DBLP, and put them in the memory. For DBLP, the data graph
includes 7,270,404 nodes and 9,047,382 edges. The whole processes of generating
the data graphs from DBLP take 89 s. Another program is written to automati-
cally extract terms from DBLP, and a total of 534,124 terms are found. Then an
inverted index is built for all the terms, which takes 105 seconds. We compare
our methods with BANKS [2] and BLINKS [5].

5.1 Algorithm Training

Algorithm Convergency. We select many keyword pairs to run against
ACOKS in the experiments, but only part of the experimental results will be
presented here since they all share similar features. The results of two keyword
pairs are reported here, i.e., K1 = {Database,Design}, K2 = {Zhang, Ullman}.
Figure 3 shows the relationship between the score of the optimal Steiner tree and
the number of iterations of ACOKS, in which the scoring method of BANKS
is adopted. We can see from Fig. 3 that the result quality is improved step by
step during the algorithm training process, and it can achieve high result quality
after the algorithm converges.

0 10 20 30 40 50 
0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

S
co

re

Iterations

 ACOKS

(a) K1

0 10 20 30 40 50 
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

S
co

re

Iterations

 ACOKS

(b) K2

Fig. 3. The convergence curve of the algorithm training process

Compression Ratio of Pheromone Matrix. During the process of algorithm
training, we analyzed the compression ratio of pheromone matrix for many paired
keywords, so as to show that our method of constructing pheromone matrix
based on paired keywords spanning graph is able to greatly reduce the space
costs of the pheromone matrix. Here the compression ratio of the pheromone
matrix, denoted f , is defined as Npksg/Ndg, where Npksg means the number of
elements in the pheromone matrix based on a paired keywords spanning graph,
and Ndg means the number of elements in the pheromone matrix based on a

http://dblp.uni-trier.de/xml/


116 Z. Lin et al.

data graph. For the pheromone matrix based on a data graph, when it is not
optimized, the number of elements in the matrix is the square of the number of
nodes in the data graph. In theory, the number of elements in the pheromone
matrix based on paired keywords spanning graph is the square of the number
of nodes in such graph. However, for a directed graph, an edge may exist from
u to v, but there is no edge from v to u, so we will not store any pheromone
information for the latter. Furthermore, in our experiments, the maxium step
number an ant may move forward, is limited to 50, which is large enough to
satisfy any requirements in real applications. Based on the above two aspects,
the pheromone matrix in our method can be further simplified. We here select 8
groups of paired keywords, and Table 1 shows the pheromone matrix compression
ratios for them. From Table 1, we can see that our method of constructing a
pheromone matrix based on paired keywords spanning graph is able to achieve
a very high compression ratio. Through our method, all the pheromone matrices
for various paired keywords are able to be memory-resident so as to greatly
enhance the performance of ACOKS.

Table 1. Pheromone matrix compression ratio

K Nant Ndg Nkp f(×10−10)

adriano,gianluca 3029 72704042 90735 17.2

alfred,ullman 35176 72704042 698974 132

design,database 4095 72704042 120231 22.7

information,retrieval 3506 72704042 44981 8.51

manfred,joachim 5091 72704042 9608 1.82

nikolay,aphrodite 47171 72704042 894337 169

pagerank,algorithm 3747 72704042 132846 25.1

query,processing 3300 72704042 25169 4.76

relational,database 2199 72704042 2446 0.463

robert,stephan 7542 72704042 213302 40.4

search,keyword 3012 72704042 1815 0.343

sunita,soumen 26938 72704042 727019 138

vassilis,grigoris 2477 72704042 154577 29.2

5.2 Search Efficiency

We now evaluate search efficiency of BANKS, BLINKS and PACOKS. We design
50 keyword searches, and the number of keywords, m, alternates between 2 and 6.
After the response times for every search are acquired, they are averaged to be
the evaluation index. Figure 4(a) shows the performance comparison results for
BANKS, BLINKS [5] and PACOKS. We can make the following observations:

– PACOKS can outperform both BANKS and BLINKS for various keyword
number. When m = 2, it takes more than 6,000 ms for BANKS to return the



PACOKS: Progressive Ant-Colony-Optimization-Based Keyword Search 117

answers, and approximately 3000 ms for BLINKS on the DBLP dataset. While
PACOKS only runs for 410 ms to get the results. It is because PACOKS is an
ant-colony-optimization-based algorithm, which is able to take full advantage
of parallel execution among various ants. Furthermore, when PACOKS pro-
vides online service, it has gone through the algorithm training period, and
the later searches can make full use of the previously accumulated pheromone
information, thus being able to achieve high efficiency during its calling
ACOKS for each paired keywords {ki, kj}. BANKS and BLINKS, however,
do not have such feature as sharing high costs among various searches.

– It performs best for PACOKS when the keyword number is 2, because there
is no result subtree merging process. When the keyword number is 3, 4, 5 or
6, the search in PACOKS is split into several keyword pairs and there exists
result subtree merging process, which leads to the increase of search response
time.

– PACOKS is with good scalability. When m changes from 2 to 6, the response
time for PACOKS only increases from 410 ms to 1,040 ms. The increase in
time is mainly due to the subtree merging process.

2 3 4 5 6 
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

R
es

po
ns

e 
Ti

m
e(

m
s)

The Number of Keywords

 BANKS
 BLINKS
 PACOKS

(a) various keyword number

top-1 top-5 top-10 top-20 top-50 top-100 

1000

2000

3000

4000

5000

6000

7000

8000

R
es

po
ns

e 
Ti

m
e(

m
s)

top-k

 BANKS
 BLINKS
 PACOKS

(b) top-k search, m = 3

Fig. 4. Response time comparison

Furthermore, we compare the three algorithms on the aspect of response time
for top-k answers in Fig. 4(b). One can see that our method is able to achieve
much better performance than BANKS and BLINKS. For example, PACOKS
only runs 190 ms to return the top-5 answers on the DBLP dataset, while BANKS
and BLINKS take more than 4,000 ms and 2,000 ms respectively. This is also
attributed to the “cost sharing mechanism” adopted by our method.

6 Related Work

Keyword search over structural data (e.g., relational database) and semi-
structural data (e.g., XML and HTML documents), has received much attention
in the database community in recent years. Existing approaches to support key-
word search over relational databases can be typically classified into two cate-
gories, namely those based on data graph (e.g., BANKS [2] and EASE [9]) and
those based on schema graph (e.g., DISCOVER [6] and DBXplorer [1]).



118 Z. Lin et al.

BANKS [2] is a representative of data-graph-based method, which uses a
back expanding search algorithm to traverse the graph. However, back expanding
search algorithm deteriorates a lot when it meets a node with large in-degrees.
BANKS-II [7] improves the performance of BANKS through bidirectional search.
In BLINKS [5], He et al. they proposed a partition-based method and a strategy
called cost-balanced expansion, and at the same time, used an additional bi-level
index to speed up the traversing process, which achieves better search efficiency
than BANKS-II. Li et al. [9] proposed the concept of “r -radius Steiner tree”, and
keyword search problem is converted into a r -radius Steiner tree problem, which
is able to identify some complicated and meaningful structures from database.
Simple structures, such as tuple joining trees, are the focus of the literature in
the initial research stage. Then research interest is extended to search for more
sophisticated structures, such as r-radius Steiner tree [9], community, frequent
co-occurring term [14].

DISCOVER [6] and DBXplorer [1] run SQL statements directly against data-
base, while other work, such as [12], take middleware to execute SQL statements.
DISCOVER and DBXplorer only focus on the search efficiency instead of result
effectiveness, so Liu et al. [10] proposed a new weighted ranking mechanism and
carried out extensive experiments to improve effectiveness of keyword search.
Luo et al. [11] discussed how to support efficient top-k keyword search over
relational database.

7 Conclusion

In this paper, we have addressed the problem of keyword search over rela-
tional databases. We proposed ant-colony-optimization-based algorithm, called
ACOKS, to deal with minimum group Steiner tree problem. To limit the cost of
a single search to a very low level, we further proposed progressive-ant-colony-
optimization-based algorithm, called PACOKS, which aims to achieve the final
global optimal solution, through the cooperation of searches continuously arriv-
ing at the system along the time. Thus the huge costs for finding the global opti-
mal solution, are shared among large amounts of searches, and a single search
can achieve very fast response time. The experimental results show that our
proposed scheme can achieve both high efficiency and effectiveness.

References

1. Agrawal, S., Chaudhuri, S., Das, G.: DBXplorer: A system for keyword-based
search over relational databases. In: Proceedings of ICDE, pp. 5–16 (2002)

2. Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword
searching and browsing in databases using banks. In: Proceedings of ICDE, pp.
431–440 (2002)

3. Djebali, S., Raimbault, T.: SimplePARQL: a new approach using keywords over
SPARQL to query the web of data. In: Proceedings of the 11th International Con-
ference on Semantic Systems, SEMANTICS 2015, Vienna, Austria, 15–17 Septem-
ber 2015, pp. 188–191 (2015)



PACOKS: Progressive Ant-Colony-Optimization-Based Keyword Search 119

4. Gutjahr, W.J.: A graph-based ant system and its convergence. Future Gener. Com-
put. Syst. 16(1), 873–888 (2000)

5. He, H., Wang, H., Yang, J., Yu, P.S.: BLINKS: ranked keyword searches on graphs.
In: Proceedings of SIGMOD, pp. 305–316 (2007)

6. Hristidis, V., Papakonstantinou, Y.: DISCOVER: Keyword search in relational-
databases. In: Proceedings of VLDB, pp. 670–681 (2002)

7. Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R., Karambelkar,
H.: Bidirectional expansion for keyword search on graph databases. In: Proceedings
of VLDB, pp. 505–516 (2005)

8. Kim, I.-J., Whang, K.-Y., Kwon, H.-Y.: SRT-rank: Ranking keyword query results
in relational databases using the strongly related tree. IEICE Trans. Inf. Syst.
97(D(9)), 2398–2414 (2014)

9. Li, G., Ooi, B.C., Feng, J., Wang, J., Zhou, L.: EASE: an effective 3-in-1 key-
word search method for unstructured, semi-structured and structured data. In:
Proceedings of SIGMOD, pp. 903–914 (2008)

10. Liu, F., Yu, C., Meng, W., Chowdhury, A.: Effective keyword search in relational
databases. In: Proceedings of SIGMOD, pp. 563–574 (2006)

11. Luo, Y., Wang, W., Lin, X., Zhou, X., Wang, J., Li, K.: Spark2: Top-k keyword
query in relational databases. TKDE 23(12), 1763–1780 (2011)

12. Markowetz, A., Yang, Y., Papadias, D.: Keyword search on relational data streams.
In: Proceedings of SIGMOD, pp. 605–616 (2007)

13. Park, C.-S., Lim, S.: Effective keyword query processing with an extended answer
structure in large graph databases. IJWIS 10(1), 65–84 (2014)

14. Tao, Y., Yu, J.X.: Finding frequent co-occurring terms in relational keyword search.
In: Proceedings of EDBT, pp. 839–850 (2009)

15. Yang, W., Guo, T.: An ant colony optimization algorithm for the minimum steiner
tree problem and its convergence proof. Acta Math. Appl. Sinica 29(2), 352–361
(2006)

16. Zhou, J., Liu, Y., Yu, Z.: Improving the effectiveness of keyword search in databases
using query logs. In: Li, J., Sun, Y., Yu, X., Sun, Y., Dong, X.L., Dong, X.L. (eds.)
WAIM 2015. LNCS, vol. 9098, pp. 193–206. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-21042-1 16

http://dx.doi.org/10.1007/978-3-319-21042-1_16
http://dx.doi.org/10.1007/978-3-319-21042-1_16

	PACOKS: Progressive Ant-Colony-Optimization-Based Keyword Search over Relational Databases
	1 Introduction
	2 Data-Graph-Based Approach
	2.1 Data Graph
	2.2 Steiner Tree Problem

	3 The ACOKS Algorithm
	4 The PACOKS Algorithm
	4.1 The Defect of ACOKS
	4.2 The PACOKS Algorithm

	5 Experimental Study
	5.1 Algorithm Training
	5.2 Search Efficiency

	6 Related Work
	7 Conclusion
	References


