
林子雨

北京大学计算机系数据库实验室

2006年11月10日

Oracle CDC调研报告

Department of Computer Science and Technology, Peking University, Nov 10, 2006

The Redo Log and a Capture Process

Department of Computer Science and Technology, Peking University, Nov 10, 2006

Redo log
Every Oracle database has a set of two or more redo log files.

The redo log files for a database are collectively known as the database

redo log.

The primary function of the redo log is to record all changes made to the

database.

Redo logs are used to guarantee recoverability in the event of human

error or media failure.

Capture process
A capture process is an optional Oracle background process that scans

the database redo log to capture DML and DDL changes made to database

objects.

When a capture process is configured to capture changes from a redo log,

the database where the changes were generated is called the source

database.

The Redo Log and a Capture Process

Department of Computer Science and Technology, Peking University, Nov 10, 2006

local capture process & downstream capture process

A capture process can run on the source database or on a remote

database.

When a capture process runs on the source database, the capture

process is a local capture process.

When a capture process runs on a remote database, the capture process

is called a downstream capture process, and the remote database is

called the downstream database.

Logical Change Records (LCRs)

Department of Computer Science and Technology, Peking University, Nov 10, 2006

 A capture process reformats changes captured from the redo log into LCRs.

 An LCR is a message with a specific format that describes a database

change.

 A capture process captures two types of LCRs: row LCRs and DDL LCRs.

 After capturing an LCR, a capture process enqueues a message containing

the LCR into a queue.

 A capture process is always associated with a single ANYDATA queue, and it

enqueues messages into this queue only.

 For improved performance, captured messages always are stored in a

buffered queue, which is System Global Area (SGA) memory associated with

an ANYDATA queue. You can create multiple queues and associate a different

capture process with each queue.

Logical Change Records (LCRs)

Department of Computer Science and Technology, Peking University, Nov 10, 2006

Logical Change Records (LCRs)

Department of Computer Science and Technology, Peking University, Nov 10, 2006

Row LCRs

A row LCR describes a change to the data in a single row or a

change to a single LONG,LONG RAW, or LOB column in a row.

The change results from a data manipulation language (DML)

statement or a piecewise update to a LOB.

For example, a single DML statement can insert or merge

multiple rows into a table, can update multiple rows in a table, or

can delete multiple rows from a table.

Therefore, a single DML statement can produce multiple row

LCRs. That is, a capture process creates an LCR for each row that

is changed by the DML statement.

In addition, an update to a LONG, LONG RAW, or LOB column in

a single row can result in more than one row LCR.

Logical Change Records (LCRs)

Department of Computer Science and Technology, Peking University, Nov 10, 2006

Each row LCR is encapsulated in an object of

LCR$_ROW_RECORD type and contains the following

attributes:
source_database_name: The name of the source database where the

row change occurred.

command_type: The type of DML statement that produced the change,

either INSERT, UPDATE, DELETE, LOB ERASE, LOB WRITE, or LOB TRIM.

object_owner: The schema name that contains the table with the changed

row.

object_name: The name of the table that contains the changed row.

tag: A raw tag that can be used to track the LCR.

transaction_id: The identifier of the transaction in which the DML statement

was run.

Logical Change Records (LCRs)

Department of Computer Science and Technology, Peking University, Nov 10, 2006

Each row LCR is encapsulated in an object of

LCR$_ROW_RECORD type and contains the following

attributes:
scn: The system change number (SCN) at the time when the change

record was written to the redo log.

old_values: The old column values related to the change. These are the

column values for the row before the DML change. If the type of the DML

statement is UPDATE or DELETE, then these old values include some or all

of the columns in the changed row before the DML statement. If the type of

the DML statement is INSERT, then there are no old values.

new_values: The new column values related to the change. These are the

column values for the row after the DML change. If the type of the DML

statement is UPDATE or INSERT, then these new values include some or all

of the columns in the changed row after the DML statement. If the type of

the DML statement is DELETE, then there are no new values.

Logical Change Records (LCRs)

Department of Computer Science and Technology, Peking University, Nov 10, 2006

A captured row LCR can also contain transaction control statements.

These row LCRs contain directives such as COMMIT and ROLLBACK.

Such row LCRs are internal and are used by an apply process to maintain

transaction consistency between a source database and a destination

database.

Logical Change Records (LCRs)

Department of Computer Science and Technology, Peking University, Nov 10, 2006

DDL LCRs
A DDL LCR describes a data definition language (DDL) change. A DDL

statement changes the structure of the database. For example, a DDL

statement can create, alter, or drop a database object.

Logical Change Records (LCRs)

Department of Computer Science and Technology, Peking University, Nov 10, 2006

Each DDL LCR contains the following information:
source_database_name: The name of the source database where the

DDL change occurred.

command_type: The type of DDL statement that produced the change,

for example ALTER TABLE or CREATE INDEX.

object_owner: The schema name of the user who owns the database

object on which the DDL statement was run.

object_name: The name of the database object on which the DDL

statement was run.

object_type: The type of database object on which the DDL statement

was run,for example TABLE or PACKAGE.ddl_text: The text of the DDL

statement.

logon_user: The logon user, which is the user whose session executed

the DDL statement.

Logical Change Records (LCRs)

Department of Computer Science and Technology, Peking University, Nov 10, 2006

Each DDL LCR contains the following information:
current_schema: The schema that is used if no schema is specified for

an object in the DDL text.

base_table_owner: The base table owner. If the DDL statement is

dependent on a table, then the base table owner is the owner of the table on

which it is dependent.

base_table_name: The base table name. If the DDL statement is

dependent on a table, then the base table name is the name of the table on

which it is dependent.

tag: A raw tag that can be used to track the LCR.

transaction_id: The identifier of the transaction in which the DDL

statement was run.

scn: The SCN when the change was written to the redo log.

Capture Process Rules

Department of Computer Science and Technology, Peking University, Nov 10, 2006

A capture process either captures or discards changes

based on rules that you define.

Each rule specifies the database objects and types of

changes for which the rule evaluates to TRUE. You can

place these rules in a positive rule set or negative rule set

for the capture process.

If a rule evaluates to TRUE for a change, and the rule is in the positive rule

set for a capture process, then the capture process captures the change.

If a rule evaluates to TRUE for a change, and the rule is in the negative

rule set for a capture process, then the capture process discards the change.

If a capture process has both a positive and a negative rule set, then the

negative rule set is always evaluated first.

Capture Process Rules

Department of Computer Science and Technology, Peking University, Nov 10, 2006

You can specify capture process rules at the following

levels:

A table rule captures or discards either row changes resulting from DML

changes or DDL changes to a particular table. Subset rules are table rules

that include a subset of the row changes to a particular table.

A schema rule captures or discards either row changes resulting from DML

changes or DDL changes to the database objects in a particular schema.

A global rule captures or discards either all row changes resulting from

DML changes or all DDL changes in the database.

Datatypes Captured

Department of Computer Science and Technology, Peking University, Nov 10, 2006

When capturing the row changes resulting from DML

changes made to tables, a capture process can capture

changes made to columns of the following datatypes:

VARCHAR2■ NVARCHAR2■ NUMBER■ LONG■ DATE■ BINARY_FLOAT

■ BINARY_DOUBLE■ TIMESTAMP■ TIMESTAMP WITH TIME ZONE

■ TIMESTAMP WITH LOCAL TIME ZONE■ INTERVAL YEAR TO MONTH

■ INTERVAL DAY TO SECOND■ RAW■ LONG RAW■ CHAR■ NCHAR

■ CLOB■ NCLOB■ BLOB■ UROWID

Datatypes Captured

Department of Computer Science and Technology, Peking University, Nov 10, 2006

A capture process does not capture the results of DML

changes to columns of thefollowing datatypes:

 BFILE

 ROWID

 user-defined types (including object types, REFs, varrays, nested tables,

and Oracle-supplied types).

Also, a capture process cannot capture changes to

columns if the columns have been encrypted using

transparent data encryption.

Types of DML Changes Captured

Department of Computer Science and Technology, Peking University, Nov 10, 2006

When you specify that DML changes made to certain

tables should be captured, a capture process captures the

following types of DML changes made to these tables:

 INSERT

 UPDATE

 DELETE

 MERGE

 Piecewise updates to LOBs

DDL Changes and Capture Processes

Department of Computer Science and Technology, Peking University, Nov 10, 2006

A capture process captures the DDL changes that satisfy

its rule sets, except for the following types of DDL changes:

 ALTER DATABASE

 CREATE CONTROLFILE

 CREATE DATABASE

 CREATE PFILE

 CREATE SPFILE

 FLASHBACK DATABASE

Instantiation in a Streams Environment

Department of Computer Science and Technology, Peking University, Nov 10, 2006

In a Streams environment that shares a database object within a single

database or between multiple databases, a source database is the database

where changes to the object are generated in the redo log, and a destination

database is the database where these changes are dequeued by an apply

process.

If a capture process captures or will capture such changes, and the changes

will be applied locally or propagated to other databases and applied at

destination databases, then you must instantiate these source database objects

before these changes can be dequeued and processed by an apply process.

If a database where changes to the source database objects will be applied is a

different database than the source database, then the destination database must

have a copy of these database objects.

Instantiation in a Streams Environment

Department of Computer Science and Technology, Peking University, Nov 10, 2006

In Streams, the following general steps instantiate a

database object:

1. Prepare the object for instantiation at the source database.

2. If a copy of the object does not exist at the destination database, then

create an object physically at the destination database based on an object at

the source database. You can use export/import, transportable table spaces,

or RMAN to copy database objects for instantiation. If the database objects

already exist at the destination database, then this step is not necessary.

3. Set the instantiation SCN for the database object at the destination

database. An instantiation SCN instructs an apply process at the destination

database to apply only changes that committed at the source database after

the specified SCN.

Local Capture and Downstream Capture

Department of Computer Science and Technology, Peking University, Nov 10, 2006

You can configure a capture process to run locally on a

source database or remotely on a downstream database.

A single database can have one or more capture

processes that capture local changes and other capture

processes that capture changes from a remote source

database. That is, you can configure a single database to

perform both local capture and downstream capture.

Local Capture

Department of Computer Science and Technology, Peking University, Nov 10, 2006

The Source Database Performs All Change Capture Actions

The DBMS_CAPTURE_ADM.BUILD procedure is run to extract (or build)

the data dictionary to the redo log.

 Supplemental logging at the source database places additional information

in the redo log. This information might be needed when captured changes are

applied by an apply process.

 The first time a capture process is started at the database, Oracle uses the

extracted data dictionary information in the redo log to create a LogMiner

data dictionary, which is separate from the primary data dictionary for the

source database. Additional capture processes can use this existing LogMiner

data dictionary, or they can create new LogMiner data dictionaries.

 A capture process scans the redo log for changes using LogMiner.

Local Capture

Department of Computer Science and Technology, Peking University, Nov 10, 2006

The Source Database Performs All Change Capture Actions

The rules engine evaluates changes based on the rules in one or more of

the capture process rule sets.

 The capture process enqueues changes that satisfy the rules in its rule sets

into a local ANYDATA queue.

 If the captured changes are shared with one or more other databases, then

one or more propagations propagate these changes from the source

database to the other databases.

 If database objects at the source database must be instantiated at a

destination database, then the objects must be prepared for instantiation

and a mechanism such as an Export utility must be used to make a copy of

the database objects.

Local Capture

Department of Computer Science and Technology, Peking University, Nov 10, 2006

Advantages:
 Configuration and administration of the capture process is simpler than

when downstream capture is used. When you use local capture, you do not

need to configure redo log file copying to a downstream database, and you

administer the capture process locally at the database where the captured

changes originated.

 A local capture process can scan changes in the online redo log before

the database writes these changes to an archived redo log file. When you use

downstream capture, archived redo log files are copied to the downstream

database after the source database has finished writing changes to them, and

some time is required to copy the redo log files to the downstream database.

 The amount of data being sent over the network is reduced, because the

entire redo log file is not copied to the downstream database. Even if

captured messages are propagated to other databases, the captured

messages can be a subset of the total changes made to the database, and

only the LCRs that satisfy the rules in the rule sets for a propagation are

propagated.

Local Capture

Department of Computer Science and Technology, Peking University, Nov 10, 2006

Advantages:
 Security might be improved because only the source (local) database can

access the redo log files. For example, if you want to capture changes in the

hr schema only, then, when you use local capture, only the source database

can access the redo log to enqueue changes to the hr schema into the

capture process queue. However, when you use downstream capture, the

redo log files are copied to the downstream database, and these redo log files

contain all of the changes made to the database, not just the changes made

to the hr schema.

 Some types of custom rule-based transformations are simpler to

configure if the capture process is running at the local source database. For

example, if you use local capture, then a custom rule-based transformation

can use cached information in a PL/SQL session variable which is populated

with data stored at the source database.

 In a Streams environment where messages are captured and applied in the

same database, it might be simpler, and use fewer resources, to configure

local queries and computations that require information about captured

changes and the local data.

Downstream Capture

Department of Computer Science and Technology, Peking University, Nov 10, 2006

Downstream capture means that a capture process runs

on a database other than the source database. The

following types of downstream capture configurations are

possible:

 real-time downstream capture

 archived-log downstream capture

A real-time downstream capture process and one or

more archived-log downstream capture processes can

coexist at a downstream database.

Real-Time Downstream Capture

Department of Computer Science and Technology, Peking University, Nov 10, 2006

A real-time downstream capture configuration

works in the following way:
Redo transport services use the log writer process (LGWR) at the

source database to send redo data to the downstream database either

synchronously or asynchronously. At the same time, the LGWR records

redo data in the online redo log at the source database.

 A remote file server process (RFS) at the downstream database

receives the redo data over the network and stores the redo data in the

standby redo log.

 A log switch at the source database causes a log switch at the

downstream database, and the ARCHn process at the downstream

database archives the current standby redo log file.

 The real-time downstream capture process captures changes from the

standby redo log whenever possible and from the archived standby redo

log files whenever necessary. A capture process can capture changes in

the archived standby redo log files if it falls behind. When it catches up, it

resumes capturing changes from the standby redo log.

Real-Time Downstream Capture

Department of Computer Science and Technology, Peking University, Nov 10, 2006

Archived-Log Downstream Capture

Department of Computer Science and Technology, Peking University, Nov 10, 2006

A archived-log downstream capture process

configuration means that :

archived redo log files from the source database are copied to the

downstream database

 the capture process captures changes in these archived redo log

files

You can copy the archived redo log files to the downstream

database using redo transport services, the BMS_FILE_TRANSFER

package, file transfer protocol (FTP), or some other mechanism

Archived-Log Downstream Capture

Department of Computer Science and Technology, Peking University, Nov 10, 2006

Downstream Capture

Department of Computer Science and Technology, Peking University, Nov 10, 2006

Advantages of Downstream Capture

 Capturing changes uses fewer resources at the source database

because the downstream database performs most of the required

work.

 If you plan to capture changes originating at multiple source

databases, then capture process administration can be simplified by

running multiple archived-log downstream capture processes with

different source databases at one downstream database. That is, one

downstream database can act as the central location for change

capture from multiple sources. In such a configuration, one real-time

downstream capture process can run at the downstream database in

addition to the archived-log downstream capture processes.

 Copying redo data to one or more downstream databases provides

improved protection against data loss. For example, redo log files at

the downstream database can be used for recovery of the source

database in some situations.

北京大学计算机系数据库实验室 2006年8月18日

Department of Computer Science and Technology, Peking University, Nov , 2006

