Spark2.1.0入门:Spark GraphX 简介

【版权声明】博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载!
返回Spark教程首页

GraphX是Spark用来图和分布式图计算的新组件。GraphX通过引入属性图:顶点和边均有属性的有向多重图,来扩充Spark的RDD.为了支持这种图计算,GraphX 开发了一组基础功能操作。GraphX仍在不断扩充图算法,用来简化图计算的分析任务。
本章节主要介绍GraphX的核心抽象模型---属性图,并通过实例介绍如何构造一个图。
继续阅读

Spark 2.1.0 入门:特征选取--卡方选择器

【版权声明】博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载!
[返回Spark教程首页]

特征选择(Feature Selection)指的是在特征向量中选择出那些“优秀”的特征,组成新的、更“精简”的特征向量的过程。它在高维数据分析中十分常用,可以剔除掉“冗余”和“无关”的特征,提升学习器的性能。
继续阅读

Spark2.1.0入门:图计算简介

【版权声明】博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载!
[返回Spark教程首页]

在实际应用中,存在许多图计算问题,如最短路径、集群、网页排名、最小切割、连通分支等。图计算算法的性能直接关系到应用问题解决的高效性,尤其对于大型图(如社交网络和网络图)而言,更是如此。

继续阅读

Spark 2.1.0 入门:协同过滤算法

【版权声明】博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载!

[返回Spark教程首页]

一、方法简介

​ 协同过滤是一种基于一组兴趣相同的用户或项目进行的推荐,它根据邻居用户(与目标用户兴趣相似的用户)的偏好信息产生对目标用户的推荐列表。
继续阅读